Definition:

- A linear inequality in one variable can be written in the form

$$
a x+b<c,
$$

where a, b, and c are real numbers. (NOTE: Definition also holds for $>, \geq, \leq$.)

Important Properties:

- Addition Property of Inequality: If a, b, and c are real numbers, then

$$
a<b \quad \text { and } \quad a+c<b+c
$$

are equivalent. (That is, you can add or subtract the same quantity on both sides of the inequality without changing the solution.)

- Multiplication Property of Inequality: For all real numbers a, b, and c, with $c \neq 0$,

1. $a<b$ and $a c<b c$ are equivalent if $c>0$.
2. $a<b$ and $a c>b c$ are equivalent if $c<0$.
(That is, whenever you multiply or divide by a negative number you must reverse or flip the inequality.)

Common Mistakes to Avoid:

- DO NOT reverse the inequality when you add or subtract a negative number; only when you multiply or divide by a negative number.
- When clearing the parentheses in an expression like $7-(2 x-4)$, remember that the minus sign acts like a factor of -1 . After using the distributive property, the sign of every term in the parentheses will be changed to give $7-2 x+4$.
- To clear fractions from an inequality, multiply every term on each side by the lowest common denominator. Remember that $\frac{3 x}{2}(x-2)$ is considered one term, whereas, $\frac{3 x^{2}}{2}-3 x$ is considered two terms. To avoid a mistake, clear all parentheses using the distributive property before multiplying every term by the common denominator.
- To preserve the solution to an inequality, remember to perform the same operation on both sides (or all parts) of the inequality.

PROBLEMS

$\underline{\text { Solve for } x \text { in each of the following inequalities: }}$

1. $2 x-3 \leq 6-5 x$

$$
\begin{aligned}
2 x-3 & \leq 6-5 x \\
7 x-3 & \leq 6 \\
7 x & \leq 9 \\
x & \leq \frac{9}{7} \\
x & \leq \frac{9}{7}
\end{aligned}
$$

2. $3(2 x+5)>4 x+1$

$$
\begin{aligned}
& 3(2 x+5)>4 x+1 \\
& 6 x+15>4 x+1 \\
& 2 x+15>1 \\
& 2 x>-14 \\
& x>-7 \\
& x>-7
\end{aligned}
$$

3. $2(3-x)+1 \leq 4-(x+1)$

$$
\begin{aligned}
2(3-x)+1 & \leq 4-(x+1) \\
6-2 x+1 & \leq 4-x-1 \\
7-2 x & \leq 3-x \\
7-x & \leq 3 \\
-x & \leq-4 \\
x & \geq 4 \\
x & \geq 4
\end{aligned}
$$

4. $-(5+2 x)-3+7 x \leq 3(x-2)$

$$
\begin{aligned}
-(5+2 x)-3+7 x & \leq 3(x-2) \\
-5-2 x-3+7 x & \leq 3 x-6 \\
5 x-8 & \leq 3 x-6 \\
2 x-8 & \leq-6 \\
2 x & \leq 2 \\
x & \leq 1
\end{aligned}
$$

$$
x \leq 1
$$

5. $\frac{5 x-2}{3}>4$

NOTE: Multiplying each term by the lowest common denominator of 3 will eliminate all fractions.

$$
\begin{aligned}
& \frac{5 x-2}{3}>4 \\
& 3\left(\frac{5 x-2}{3}\right)>3(4) \\
& 5 x-2>12 \\
& 5 x>14 \\
& x>\frac{14}{5} \\
& x>\frac{14}{5}
\end{aligned}
$$

6. $-\frac{1}{5}(2 x+3)<\frac{2}{3}(x-2)$

NOTE: Multiplying each term by the lowest common denominator of 15 will eliminate all fractions.

$$
\begin{aligned}
-\frac{1}{5}(2 x+3) & <\frac{2}{3}(x-2) \\
-\frac{2 x}{5}-\frac{3}{5} & <\frac{2 x}{3}-\frac{4}{3} \\
15\left(-\frac{2 x}{5}\right)-15\left(\frac{3}{5}\right) & <15\left(\frac{2 x}{3}\right)-15\left(\frac{4}{3}\right) \\
-6 x-9 & <10 x-20 \\
-16 x-9 & <-20 \\
-16 x & <-11 \\
x & >\frac{11}{16} \\
x & >\frac{11}{16}
\end{aligned}
$$

7. $3 \leq 2 x-5<5$

$$
\begin{gathered}
3 \leq 2 x-5<5 \\
8 \leq 2 x<10 \\
4 \leq x<5 \\
\\
4 \leq x<5
\end{gathered}
$$

8. $-3<\frac{2-3 x}{5} \leq 2$

NOTE: Multiplying each term by the lowest common denominator of 5 will eliminate all fractions.

$$
\begin{gathered}
-3<\frac{2-3 x}{5} \leq 2 \\
-3<\frac{2}{5}-\frac{3 x}{5} \leq 2 \\
5(-3)<5\left(\frac{2}{5}\right)-5\left(\frac{3 x}{5}\right) \leq 5(2) \\
-15<2-3 x \leq 10 \\
-17<-3 x \leq 8 \\
\frac{17}{3}>x \geq-\frac{8}{3} \\
\frac{17}{3}>x \geq-\frac{8}{3}
\end{gathered}
$$

9. $-4<3(2 x-1)+1<8$

$$
\begin{gathered}
-4<3(2 x-1)+1<8 \\
-4<6 x-3+1<8 \\
-4<6 x-2<8 \\
-2<6 x<10 \\
-\frac{2}{6}<x<\frac{10}{6} \\
-\frac{1}{3}<x<\frac{5}{3} \\
-\frac{1}{3}<x<\frac{5}{3}
\end{gathered}
$$

