Definition:

- n-th root of a : The n-th root of a, denoted $\sqrt[n]{a}$, is a number whose n-th power equals a. In other words,

$$
\sqrt[n]{a}=b \quad \text { means } \quad b^{n}=a
$$

The number n is called the index.

Important Properties:

- Product rule for radicals: If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and n is a positive integer,

$$
\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}
$$

In other words, the product of radicals is the radical of the product.

- FOIL: First Outer Inner Last. This is one method for multiplying factors which have two terms.
- Distributive Property: Recall that

$$
a(b+c)=a b+a c \quad \text { and } \quad a(b-c)=a b-a c
$$

- Special Formulas: Note that you do not need to memorize these formulas. They arise by using FOIL.

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x-y)^{2}=x^{2}-2 x y+y^{2} \\
& (x-y)(x+y)=x^{2}-y^{2}
\end{aligned}
$$

Simplifying radicals: A radical is in simplest form when the following conditions are satisfied.

- The quantity under the radical has no factor raised to a power greater than or equal to the index.
- There is no fraction under the radical.
- There is no radical in the denominator.
- There is no common factor, other than 1, between the exponents on factors under the radical and the index.

Common Mistakes to Avoid:

- Do not drop the index when working with cubes and other n-th roots.
- Do NOT distribute factors on the outside of the radical inside the radical. For example,

$$
3 x \sqrt{2 x} \neq \sqrt{6 x^{2}} .
$$

- Remember $(a+b)^{2} \neq a^{2}+b^{2}$.

PROBLEMS

Multiply each product. Write all answers in simplest form.

1. $3 \sqrt{2}(5 \sqrt{3}-4)$

$$
\begin{array}{r}
3 \sqrt{2}(5 \sqrt{3}-4) \\
15 \sqrt{6}-12 \sqrt{2}
\end{array}
$$

2. $5 x \sqrt[3]{9}(2 \sqrt[3]{3}-6 \sqrt[3]{9})$

$$
\begin{gathered}
5 x \sqrt[3]{9}(2 \sqrt[3]{3}-6 \sqrt[3]{9}) \\
10 x \sqrt[3]{27}-30 x \sqrt[3]{81} \\
10 x \cdot 3-30 x \sqrt[3]{27 \cdot 3} \\
30 x-30 x \sqrt[3]{27} \sqrt[3]{3} \\
30 x-90 x \sqrt[3]{3}
\end{gathered}
$$

3. $(3 \sqrt{5}+2)(2 \sqrt{5}-7)$

$$
\begin{gathered}
(3 \sqrt{5}+2)(2 \sqrt{5}-7) \\
6 \sqrt{25}-21 \sqrt{5}+4 \sqrt{5}-14 \\
6 \cdot 5-21 \sqrt{5}+4 \sqrt{5}-14 \\
30-21 \sqrt{5}+4 \sqrt{5}-14 \\
16-17 \sqrt{5}
\end{gathered}
$$

4. $(\sqrt{8}-3)^{2}$

$$
\begin{gathered}
(\sqrt{8}-3)^{2} \\
(\sqrt{8}-3)(\sqrt{8}-3) \\
\sqrt{64}-3 \sqrt{8}-3 \sqrt{8}+9 \\
8-3 \sqrt{8}-3 \sqrt{8}+9 \\
17-6 \sqrt{8} \\
17-6 \sqrt{4 \cdot 2} \\
17-6 \sqrt{4} \sqrt{2} \\
17-6 \cdot 2 \sqrt{2} \\
17-12 \sqrt{2}
\end{gathered}
$$

5. $(2 \sqrt{3}+\sqrt{6})^{2}$

$$
\begin{gathered}
(2 \sqrt{3}+\sqrt{6})^{2} \\
(2 \sqrt{3}+\sqrt{6})(2 \sqrt{3}+\sqrt{6}) \\
4 \sqrt{9}+2 \sqrt{18}+2 \sqrt{18}+\sqrt{36} \\
4 \cdot 3+4 \sqrt{18}+6 \\
12+4 \sqrt{9} \sqrt{2}+6 \\
18+4 \cdot 3 \sqrt{2} \\
18+12 \sqrt{2}
\end{gathered}
$$

6. $(3 \sqrt{5}-4)(3 \sqrt{5}+4)$

$$
\begin{gathered}
(3 \sqrt{5}-4)(3 \sqrt{5}+4) \\
9 \sqrt{25}+12 \sqrt{5}-12 \sqrt{5}-16 \\
9 \cdot 5-16 \\
45-16
\end{gathered}
$$

7. $(\sqrt{7}+2)(\sqrt{2}-4)$

$$
\begin{gathered}
(\sqrt{7}+2)(\sqrt{2}-4) \\
\sqrt{14}-4 \sqrt{7}+2 \sqrt{2}-8
\end{gathered}
$$

8. $(2 \sqrt{8}-\sqrt{3})(2 \sqrt{48}-\sqrt{2})$

$$
\begin{gathered}
(2 \sqrt{8}-\sqrt{3})(2 \sqrt{48}-\sqrt{2}) \\
(2 \sqrt{4 \cdot 2}-\sqrt{3})(2 \sqrt{16 \cdot 3}-\sqrt{2}) \\
(2 \cdot 2 \sqrt{2}-\sqrt{3})(2 \cdot 4 \sqrt{3}-\sqrt{2}) \\
(4 \sqrt{2}-\sqrt{3})(8 \sqrt{3}-\sqrt{2}) \\
32 \sqrt{6}-4 \sqrt{4}-8 \sqrt{9}+\sqrt{6} \\
32 \sqrt{6}-4 \cdot 2-8 \cdot 3+\sqrt{6} \\
32 \sqrt{6}-8-24+\sqrt{6} \\
-32+33 \sqrt{6}
\end{gathered}
$$

NOTE: You could also have multiplied using FOIL first and then simplified your answer.

