Definitions:

- Square roots of a : The square root of a, denoted \sqrt{a}, is the number whose square is a. In other words,

$$
\sqrt{a}=b \quad \text { means } \quad b^{2}=a
$$

- n-th roots of a : The n-th root of a, denoted $\sqrt[n]{a}$, is a number whose n-th power equals a. In other words,

$$
\sqrt[n]{a}=b \quad \text { means } \quad b^{n}=a
$$

The number n is called the index.

Rules for n-th roots:

- Product rule for radicals: If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and n is a positive integer,

$$
\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}
$$

In other words, the product of radicals is the radical of the product.

- Quotient rule for radicals: If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and n is a positive integer,

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
$$

In other words, the radical of a quotient is the quotient of the radicals.

- Index rule for radicals: If m, n and k are positive integers, then

$$
\sqrt[k n]{a^{k m}}=\sqrt[n]{a^{m}}
$$

- If n is even, then $\sqrt[n]{a^{n}}=|a|$. For example, $\sqrt[4]{(-2)^{4}}=|-2|=2$.
- If n is odd, then $\sqrt[n]{a^{n}}=a$. For example, $\sqrt[3]{(-6)^{3}}=-6$.

Simplifying radicals: A radical is in simplest form when the following conditions are satisfied.

- The quantity under the radical has no factor raised to a power greater than or equal to the index.
- There is no fraction under the radical.
- There is no radical in the denominator.
- There is no common factor, other than 1, between the exponents on factors under the radical and the index.

Important Properties:

- If $a \geq 0$, then \sqrt{a} is the principal square root of a. If $a<0$, then \sqrt{a} cannot be evaluated in the real number system.
- If $a<0$ and n is a positive even integer, then $\sqrt[n]{a}$ is not a real number.

Common Mistakes to Avoid:

- $\sqrt[n]{x+y} \neq \sqrt[n]{x}+\sqrt[n]{y}$.
- You may only use the Product (or Quotient) rule for radicals when the radicals have the same index.

PROBLEMS

Simplify each radical. Assume that all variables represent positive real numbers.:

1. $\sqrt{\frac{64}{81}}$

$$
\sqrt{\frac{64}{81}}=\frac{\sqrt{64}}{\sqrt{81}}=\frac{8}{9}
$$

2. $\sqrt[3]{\frac{x^{9}}{27}}$

$$
\sqrt[3]{\frac{x^{9}}{27}}=\frac{\sqrt[3]{x^{9}}}{\sqrt[3]{27}}=\frac{x^{3}}{3}
$$

3. $\sqrt[3]{-27 x^{3} y^{9} z^{6}}$

$$
\sqrt[3]{-27 x^{3} y^{9} z^{6}}=-3 x y^{3} z^{2}
$$

4. $\sqrt[4]{16 x^{4} y^{12} z^{16}}$

$$
\sqrt[4]{16 x^{4} y^{12} z^{16}}=2 x y^{3} z^{4}
$$

5. $\sqrt[3]{54 x^{3} y^{5} z^{4}}$

$$
\begin{aligned}
\sqrt[3]{54 x^{3} y^{5} z^{4}} & =\sqrt[3]{27 \cdot 2 x^{3} y^{3} y^{2} z^{3} z} \\
& =\sqrt[3]{27 x^{3} y^{3} z^{3} \sqrt[3]{2 y^{2} z}} \\
& =3 x y z \sqrt[3]{2 y^{2} z}
\end{aligned}
$$

6. $\sqrt[4]{32 x^{5} y^{7} z^{9}}$

$$
\begin{aligned}
\sqrt[4]{32 x^{5} y^{7} z^{9}} & =\sqrt[4]{16 \cdot 2 x^{4} x y^{4} y^{3} z^{8} z} \\
& =\sqrt[4]{16 x^{4} y^{4} z^{8} \sqrt[4]{2 x y^{3} z}} \\
& =2 x y z^{2} \sqrt[4]{2 x y^{3} z}
\end{aligned}
$$

7. $-\sqrt[5]{96 x^{7} y^{19} z^{21}}$

$$
\begin{aligned}
-\sqrt[5]{96 x^{7} y^{19} z^{21}} & =-\sqrt[5]{32 \cdot 3 x^{5} x^{2} y^{15} y^{4} z^{20} z} \\
& =-\sqrt[5]{32 x^{5} y^{15} z^{20} \sqrt[5]{3 x^{2} y^{4} z}} \\
& =-2 x y^{3} z^{4} \sqrt[5]{3 x^{2} y^{4} z}
\end{aligned}
$$

8. $\sqrt[3]{128 x^{7} y^{2} z^{19}}$

$$
\begin{aligned}
\sqrt[3]{128 x^{7} y^{2} z^{19}} & =\sqrt[3]{64 \cdot 2 x^{6} x y^{2} z^{18} z} \\
& =\sqrt[3]{64 x^{6} z^{18} \sqrt[3]{2 x y^{2} z}} \\
& =4 x^{2} z^{6} \sqrt[3]{2 x y^{2} z}
\end{aligned}
$$

