Definitions:
- **Slope**: of a line tells how fast \(y \) changes for each unit of change in \(x \).
- **Linear equation in two variables**: is an equation that can be written as
 \[
 ax + by = c
 \]
 where \(a, b, \) and \(c \) are real numbers and \(a \) and \(b \) cannot both be zero.

Important Formulas:
- **Slope formula**: The slope of the line through the points \((x_1, y_1)\) and \((x_2, y_2)\) is given by
 \[
 m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}}
 \]
 Note that it does not matter if you start with \(y_1 \) or \(y_2 \). However, you must start with its corresponding \(x \) in the denominator.

- **Slope-intercept form**: The slope-intercept form of an equation with slope \(m \) and \(y \)-intercept \(b \) is given by
 \[
 y = mx + b
 \]

- **Point-slope formula**: The equation of the line with slope \(m \) and passing through \((x_1, y_1)\) can be found using
 \[
 y - y_1 = m(x - x_1)
 \]

Common Mistakes to Avoid:
- When identifying the slope and \(y \)-intercept using the slope-intercept form, remember to divide each term by the coefficient on \(y \). The slope and \(y \)-intercept can only be identified once you have isolated \(y \).
- Remember that the change in \(y \) is in the numerator of the slope formula. DO NOT place it in the denominator.
PROBLEMS

1. Identify the slope and the \(y \)-intercept of each line.

(a) \(3x - 2y = 6 \)

\[
\begin{align*}
3x - 2y &= 6 \\
-2y &= -3x + 6 \\
y &= \frac{3}{2}x - 3
\end{align*}
\]

\[
m = \frac{3}{2}
\]

\[
y - \text{intercept} = (0, -3)
\]

(b) \(5x + 10y = -3 \)

\[
\begin{align*}
5x + 10y &= -3 \\
10y &= -5x - 3 \\
y &= \frac{-5}{10}x - \frac{3}{10} \\
y &= -\frac{1}{2}x - \frac{3}{10}
\end{align*}
\]

\[
m = -\frac{1}{2}
\]

\[
y - \text{intercept} = \left(0, -\frac{3}{10}\right)
\]

2. Find the slope of the line passing through \((-1, 3)\) and \((5, -2)\).

\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]

\[
m = \frac{-2 - 3}{5 - (-1)}
\]

\[
m = \frac{-5}{6}
\]

\[
m = \frac{5}{6}
\]

3. Find the slope of the line passing through \((-9, 2)\) and \((-5, 5)\).

\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]

\[
m = \frac{5 - 2}{-5 - (-9)}
\]

\[
m = \frac{3}{4}
\]

\[
m = \frac{3}{4}
\]

4. Find the equation of the line with slope \(m = -3 \) and passes through \((5, -2)\).

\[
y - y_1 = m(x - x_1)
\]

\[
y - (-2) = -3(x - 5)
\]

\[
y + 2 = -3x + 15
\]

\[
y = -3x + 13
\]
5. Find the equation of the line with \(m = \frac{3}{4} \) and passing through \((-1,2)\).

\[
y - y_1 = m(x - x_1)
\]
\[
y - 2 = \frac{3}{4}(x - (-1))
\]
\[
y - 2 = \frac{3}{4}x + \frac{3}{4}
\]
\[
y = \frac{3}{4}x + 11\frac{1}{4}
\]

7. Find the equation of the line passing through \((-7,2)\) and has a \(y\)-intercept at 3.

NOTE: First, we must find the slope of the line. Remember that a \(y\)-intercept at 3 translates to the ordered pair \((0,3)\).

\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 3}{-7 - 0} = \frac{-1}{-7} = \frac{1}{7}
\]
\[
y = mx + b
\]
\[
y = \frac{1}{7}x + 3
\]

6. Find the equation of the line passing through \((-2,3)\) and \((4,-5)\).

NOTE: First, we must find the slope of the line.

\[
m = \frac{-5 - 3}{4 - (-2)} = \frac{-8}{6} = \frac{-4}{3}
\]

\[
y - y_1 = m(x - x_1)
\]
\[
y - 3 = \frac{-4}{3}(x - (-2))
\]
\[
y - 3 = \frac{-4}{3}x - \frac{8}{3}
\]
\[
y = \frac{4}{3}x + 1\frac{1}{3}
\]

8. Find the equation of the line which has an \(x\)-intercept at \(-2\) and a \(y\)-intercept at 4.

NOTE: This means that the line passes through \((-2,0)\) and \((0,4)\).

\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 0}{0 - (-2)} = \frac{4}{2} = 2
\]
\[
y = mx + b
\]
\[
y = 2x + 4
\]

9. Find the equation of the line passing through \((-7,2)\) and has an \(x\)-intercept at 3.

\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 0}{-7 - 3} = \frac{2}{-10} = \frac{-1}{5}
\]
\[
y - 0 = \frac{-1}{5}(x - 3)
\]
\[
y = \frac{-1}{5}x + 3\frac{3}{5}
\]