Definition:

- Quadratic Equation: is an equation that can be written in the form

$$
a x^{2}+b x+c=0,
$$

where a, b, and c are real numbers, $a \neq 0$.

Important Properties:

- Quadratic Formula: The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$ are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- The quadratic formula is a result of solving $a x^{2}+b x+c=0$ by completing the square.
- The quadratic formula can be used to solve any quadratic equation.
- If $b^{2}-4 a c<0$ then there are no real solutions to the quadratic equation.
- If $b^{2}-4 a c=0$, then the quadratic equation has only one real zero.
- If $b^{2}-4 a c>0$, then the quadratic equation has two real solutions.

Common Mistakes to Avoid:

- Before identifying a, b, and c to be used in the quadratic formula, make sure one side of your equation is zero.
- In the quadratic formula, the $-b$ is also divided by $2 a$.
- $\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}$.
- Be careful when simplifying your final answer. Remember that

$$
\frac{b+a c}{c} \neq b+a, \quad \text { and } \quad \frac{c+a}{c} \neq 1+a .
$$

- The quadratic formula can only be used on a quadratic equation. Do not use on a quadratic-type equation without a change of variables.

PROBLEMS

$\underline{\text { Solve the following equations using the quadratic formula. }}$

1. $6 x^{2}-5 x-4=0$

Note, $a=6, b=-5$, and $c=-4$.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(6)(-4)}}{2(6)} \\
& x=\frac{5 \pm \sqrt{25+96}}{12} \\
& x=\frac{5 \pm \sqrt{121}}{12} \\
& x=\frac{5 \pm 11}{12} \\
& x=\frac{5+11}{12}=\frac{16}{12}=\frac{4}{3}, \\
& x=\frac{5-11}{12}=\frac{-6}{12}=-\frac{1}{2} \\
& x=\frac{4}{3}, \quad x=-\frac{1}{2}
\end{aligned}
$$

2. $x^{2}+3 x-2=0$

Note, $a=1, b=3$, and $c=-2$.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-3 \pm \sqrt{3^{2}-4(1)(-2)}}{2(1)} \\
& x=\frac{-3 \pm \sqrt{9+8}}{2} \\
& x=\frac{-3 \pm \sqrt{17}}{2}
\end{aligned}
$$

$$
x=\frac{-3 \pm \sqrt{17}}{2}
$$

3. $x^{2}-4=2 x$

We must make one side zero before we can identify a, b, and c.

$$
\begin{aligned}
x^{2}-4 & =2 x \\
x^{2}-2 x-4 & =0
\end{aligned}
$$

Therefore, $a=1, b=-2$, and $c=-4$.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-4)}}{2(1)} \\
& x=\frac{2 \pm \sqrt{4+16}}{2} \\
& x=\frac{2 \pm \sqrt{20}}{2} \\
& x=\frac{2 \pm 2 \sqrt{5}}{2} \\
& x=\frac{2(1 \pm \sqrt{5})}{2} \\
& x=1 \pm \sqrt{5}
\end{aligned}
$$

$$
x=1 \pm \sqrt{5}
$$

4. $4 x^{2}+4 x-1=0$

Note, $a=4, b=4$, and $c=-1$.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-4 \pm \sqrt{4^{2}-4(4)(-1)}}{2(4)} \\
& x=\frac{-4 \pm \sqrt{16+16}}{8} \\
& x=\frac{-4 \pm \sqrt{32}}{8} \\
& x=\frac{-4 \pm 4 \sqrt{2}}{8} \\
& x=\frac{4(-1 \pm \sqrt{2})}{8} \\
& x=\frac{-1 \pm \sqrt{2}}{2} \\
& x=\frac{1 \pm \sqrt{2}}{2}
\end{aligned}
$$

5. $5 x^{2}-3 x=7$

$$
\begin{array}{r}
5 x^{2}-3 x=7 \\
5 x^{2}-3 x-7=0
\end{array}
$$

Therefore, $a=5, b=-3$, and $c=-7$.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(5)(-7)}}{2(5)} \\
& x=\frac{3 \pm \sqrt{9+140}}{10} \\
& x=\frac{3 \pm \sqrt{149}}{10} \\
& x=\frac{3 \pm \sqrt{149}}{10}
\end{aligned}
$$

6. $-2 x(x+4)=-6$

$$
\begin{aligned}
-2 x(x+4) & =-6 \\
-2 x^{2}-8 x & =-6 \\
-2 x^{2}-8 x+6 & =0
\end{aligned}
$$

Note, that a -2 can be divided out of each term. Therefore, before using the quadratic formula, we will divide each term by -2 .

$$
\begin{array}{r}
-2 x^{2}-8 x+6=0 \\
x^{2}+4 x-3=0
\end{array}
$$

Hence, $a=1, b=4$, and $c=-3$.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-4 \pm \sqrt{4^{2}-4(1)(-3)}}{2(1)} \\
& x=\frac{-4 \pm \sqrt{16+12}}{2} \\
& x=\frac{-4 \pm \sqrt{28}}{2} \\
& x=\frac{-4 \pm 2 \sqrt{7}}{2} \\
& x=\frac{2(-2 \pm \sqrt{7})}{2} \\
& x=-2 \pm \sqrt{7} \\
& x=-2 \pm \sqrt{7}
\end{aligned}
$$

7. $7 x^{2}-3 x=-6$

We must first make one side zero before identifying a, b, and c.

$$
\begin{aligned}
7 x^{2}-3 x & =-6 \\
7 x^{2}-3 x+6 & =0
\end{aligned}
$$

Therefore, $a=7, b=-3$, and $c=6$.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(7)(6)}}{2(7)} \\
& x=\frac{3 \pm \sqrt{9-168}}{14} \\
& x=\frac{3 \pm \sqrt{-159}}{14}
\end{aligned}
$$

No real solution
8. $x^{2}+16=8 x$

Once again, we must have one side zero before we can identify a, b, or c.

$$
\begin{aligned}
x^{2}+16 & =8 x \\
x^{2}-8 x+16 & =0
\end{aligned}
$$

Therefore, $a=1, b=-8$, and $c=16$.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(1)(16)}}{2(1)} \\
& x=\frac{8 \pm \sqrt{64-64}}{2} \\
& x=\frac{8}{2} \\
& x=4
\end{aligned}
$$

$$
x=4
$$

