Definitions:

- **Slope**: of a line tells how fast y changes for each unit of change in x.
- **Linear equation in two variables**: is an equation that can be written as $ax + by = c$ where $a, b,$ and c are real numbers and a and b cannot both be zero.

Important Formulas:

- **Slope formula**: The slope of the line through the points (x_1, y_1) and (x_2, y_2) is given by

 $$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{change in } y}{\text{change in } x} = \frac{\text{rise}}{\text{run}}$$

 Note that it does not matter if you start with y_1 or y_2. However, you must start with its corresponding x in the denominator.

- **Slope-intercept form**: The slope-intercept form of an equation with slope m and y–intercept b is given by

 $$y = mx + b.$$

- **Point-slope formula**: The equation of the line with slope m and passing through (x_1, y_1) can be found using

 $$y - y_1 = m(x - x_1).$$

Common Mistakes to Avoid:

- When identifying the slope and y–intercept using the slope-intercept form, remember to divide each term by the coefficient on y. The slope and y–intercept can only be identified once you have isolated y.
- Remember that the change in y is in the numerator of the slope formula. DO NOT place it in the denominator.
PROBLEMS

1. Identify the slope and the \(y \)-intercept of each line.

 (a) \(3x - 2y = 6 \)

 \[
 \begin{align*}
 3x - 2y &= 6 \\
 -2y &= -3x + 6 \\
 y &= \frac{3}{2}x - 3 \\

 \frac{m}{2} &= 3 \\

 y - \text{intercept} &= (0, -3)
 \end{align*}
 \]

 (b) \(5x + 10y = -3 \)

 \[
 \begin{align*}
 5x + 10y &= -3 \\
 10y &= -5x - 3 \\
 y &= -\frac{5}{10}x - \frac{3}{10} \\
 y &= -\frac{1}{2}x - \frac{3}{10} \\

 \frac{m}{2} &= -\frac{1}{2} \\

 y - \text{intercept} &= \left(0, -\frac{3}{10}\right)
 \end{align*}
 \]

2. Find the slope of the line passing through \((-1, 3)\) and \((5, -2)\).

 \[
 m = \frac{y_2 - y_1}{x_2 - x_1} \\
 m = \frac{-2 - 3}{5 - (-1)} \\
 m = \frac{5}{6} \\

 \frac{m}{2} = \frac{5}{6}
 \]

3. Find the slope of the line passing through \((-9, 2)\) and \((-5, 5)\).

 \[
 m = \frac{y_2 - y_1}{x_2 - x_1} \\
 m = \frac{5 - 2}{-5 - (-9)} \\
 m = \frac{3}{4} \\

 \frac{m}{2} = \frac{3}{4}
 \]

4. Find the equation of the line with slope \(m = -3 \) and passes through \((5, -2)\).

 \[
 y - y_1 = m(x - x_1) \\
 y - (-2) = -3(x - 5) \\
 y + 2 = -3x + 15 \\
 y = -3x + 13 \\

 \frac{m}{2} = -3x + 13
 \]
5. Find the equation of the line with \(m = \frac{3}{4} \) and passing through \((-1, 2)\).

\[
y - y_1 = m(x - x_1)
\]
\[
y - 2 = \frac{3}{4}(x - (-1))
\]
\[
y - 2 = \frac{3}{4}x + \frac{3}{4}
\]
\[
y = \frac{3}{4}x + \frac{11}{4}
\]

7. Find the equation of the line passing through \((-7, 2)\) and has a \(y\)-intercept at 3.

NOTE: First, we must find the slope of the line. Remember that a \(y\)-intercept at 3 translates to the ordered pair \((0, 3)\).

\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 3}{-7 - 0} = \frac{-1}{-7} = \frac{1}{7}
\]
\[
y = mx + b
\]
\[
y = \frac{1}{7}x + 3
\]

8. Find the equation of the line which has an \(x\)-intercept at \(-2\) and a \(y\)-intercept at 4.

NOTE: This means that the line passes through \((-2, 0)\) and \((0, 4)\).

\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 0}{0 - (-2)} = \frac{4}{2} = 2
\]
\[
y = mx + b
\]
\[
y = 2x + 4
\]

9. Find the equation of the line passing through \((-7, 2)\) and has an \(x\)-intercept at 3.

\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 0}{-7 - 3} = \frac{2}{-10} = -\frac{1}{5}
\]
\[
y - 0 = -\frac{1}{5}(x - 3)
\]
\[
y = -\frac{1}{5}x + \frac{3}{5}
\]