Important Properties:

- When a polynomial has four terms, common factors can sometimes by used to factor by grouping.
- Recall the formula for the difference of two squares:

$$
x^{2}-y^{2}=(x-y)(x+y)
$$

- It does not matter the order that you list the factors. For example,

$$
(3 x-2)(x+1)=(x+1)(3 x-2)
$$

- You can always check your answer by multiplication.

Common Mistakes to Avoid:

- Recall that the sum of two squares does not factor.
- Sometimes the current order does not lead to a common factor. If this happens try rearranging the terms. Do not assume that this means that the expression cannot be factored.
- Be on the lookout for the difference of squares, the difference of cubes and the sum of cubes. Remember that these can be factored further.

PROBLEMS

Factor completely.

1. $2 x^{3}+3 x^{2}-8 x-12$

$$
\begin{aligned}
& \underbrace{x^{3}+x^{2}}_{x^{2}(2 x+3)-4(2 x+3)}-\underbrace{8 x-12} \\
& (2 x+3)\left(x^{2}-4\right) \\
& (2 x+3)(x-2)(x+2) \\
& \hline
\end{aligned}
$$

2. $3 x^{3}-2 x^{2}-3 x+2$

$$
\begin{gathered}
\underbrace{3 x^{3}-2 x^{2}}_{x^{2}(3 x-2)}-\underbrace{3 x+2}_{(3 x-2)} \\
(3 x-2)\left(x^{2}-1\right) \\
(3 x-2)(x-1)(x+1)
\end{gathered}
$$

3. $12 x^{3}-16 x^{2}+3 x-4$

$$
\begin{gathered}
\underbrace{12 x^{3}-16 x^{2}}_{4 x^{2}(3 x-4)+(3 x-4)}+\underbrace{3 x-4} \\
(3 x-4)\left(4 x^{2}+1\right)
\end{gathered}
$$

4. $5 x^{3}-x^{2}+20 x-4$

$$
\begin{gathered}
\underbrace{5 x^{3}-x^{2}}_{x^{2}(5 x-1)+4(5 x-1)}+\underbrace{20 x-4}_{(5 x-1)\left(x^{2}+4\right)} \\
x_{(5 x}
\end{gathered}
$$

5. $24 x^{3}-4 x^{2}-6 x+1$

$$
\begin{gathered}
\underbrace{24 x^{3}-4 x^{2}}_{4 x^{2}(6 x-1)-(6 x-1)}-\underbrace{6 x+1} \\
(6 x-1)\left(4 x^{2}-1\right) \\
(6 x-1)(2 x-1)(2 x+1) \\
\hline
\end{gathered}
$$

6. $18 x^{3}-27 x^{2}+8 x-12$

$$
\begin{gathered}
\underbrace{18 x^{3}-27 x^{2}}_{9 x^{2}(2 x-3)+4(2 x-3)}+\underbrace{8 x-12} \\
(2 x-3)\left(9 x^{2}+4\right)
\end{gathered}
$$

7. $2 x^{3}+x^{2}+50 x+25$

$$
\begin{gathered}
\underbrace{2 x^{3}+x^{2}}_{\underbrace{2}(2 x+1)+25(2 x+1)}+\underbrace{50 x+25} \\
{ }_{(2 x+1)\left(x^{2}+25\right)}
\end{gathered}
$$

8. $10 x^{2}-12 y+15 x-8 x y$

NOTE: The current order does not lead to a common factor. Therefore, we must first rearrange the terms.

$$
\begin{gathered}
\begin{array}{c}
10 x^{2}-12 y+15 x-8 x y \\
\underbrace{10 x^{2}-8 x y}-\underbrace{12 y+15 x} \\
2 x(5 x-4 y)+3(-4 y+5 x) \\
2 x(5 x-4 y)+3(5 x-4 y) \\
(5 x-4 y)(2 x+3)
\end{array}
\end{gathered}
$$

9. $10 x^{3}-2 x^{2} y^{2}-5 x y+y^{3}$

NOTE: The current order does not lead to a common factor. Therefore, we must first rearrange the terms.

$$
\begin{aligned}
& 10 x^{3}-2 x^{2} y^{2}-5 x y+y^{3} \\
& \underbrace{10 x^{3}-5 x y}-\underbrace{2 x^{2} y^{2}+y^{3}} \\
& \underbrace{}_{\left(2 x^{2}-y\right)-y^{2}\left(2 x^{2}-y\right)\left(5 x-y^{2}\right)}
\end{aligned}
$$

