Definitions:

- Absolute value equations: Let $c>0$. Then

$$
|a x+b|=c \quad \Longleftrightarrow \quad a x+b=c \quad \text { or } \quad a x+b=-c
$$

- Absolute value inequalities: For $c>0$,

$$
\begin{gathered}
\hline|a x+b| \leq c \quad \Longleftrightarrow \quad-c \leq a x+b \leq c \\
\hline|a x+b| \geq c \quad \Longleftrightarrow \quad a x+b \geq c \quad \text { or } \quad a x+b \leq-c
\end{gathered}
$$

Important Properties:

- Addition Property of Inequality: If a, b, and c are real numbers, then

$$
a<b \quad \text { and } \quad a+c<b+c
$$

are equivalent. (That is, you can add or subtract the same quantity on both sides of the inequality without changing the solution.)

- Multiplication Property of Inequality: For all real numbers a, b, and c, with $c \neq 0$,

1. $a<b$ and $a c<b c$ are equivalent if $c>0$.
2. $a<b$ and $a c>b c$ are equivalent if $c<0$.
(That is, whenever you multiply or divide by a negative number you must reverse or flip the inequality.)

- To solve an absolute value equation or inequality rewrite it without the absolute value using the definitions given above.
- To solve $|a x+b|=|c x+d|$, rewrite as

$$
a x+b=c x+d \quad \text { or } \quad a x+b=-(c x+d) .
$$

Solve these two equations for the answers.

Common Mistakes to Avoid:

- Before rewriting the absolute value equation or inequality, make sure the absolute value is isolated on one side. Do NOT rewrite until the absolute value is isolated.
- When solving $|a x+b| \leq c$, the answer must be written as a three-part inequality. Do NOT break up the answer into two inequalities.
- When solving $|a x+b| \geq c$, the answer must be written as two inequalities. Do NOT combine into one three-part inequality.

PROBLEMS

$\underline{\text { Solve for } x \text { in each of the following equations or inequalities. }}$

1. $|x-3|=4$

Since the absolute value is already isolated, we will rewrite the equation.

$$
\begin{aligned}
& x-3=4 \\
& x=7 \\
& x-3=-4 \\
& x=-1
\end{aligned}
$$

2. $|2-3 x|-5=7$

First, we need to isolate the absolute value.

$$
\begin{aligned}
|2-3 x|-5 & =7 \\
|2-3 x| & =12
\end{aligned}
$$

Rewriting the expression, we get

$$
\begin{aligned}
& 2-3 x=12 \\
&-3 x= 10 \\
& x=-\frac{10}{3} 2-3 x=-12 \\
&-3 x=-14
\end{aligned}
$$

3. $|2 x+3|=5$

Since the absolute value is already isolated, we will rewrite the equation.

$$
\begin{array}{rl}
2 x+3 & =5 \\
2 x=2 & 2 x+3=-5 \\
2 x= & =-8 \\
x=1 & x=-4
\end{array}
$$

4. $5-|4 x+1|=2$

First, we need to isolate the absolute value.

$$
\begin{aligned}
5-|4 x+1| & =2 \\
-|4 x+1| & =-3 \\
|4 x+1| & =3
\end{aligned}
$$

Rewriting the expression, we get

$$
\begin{aligned}
4 x+1 & =3 \\
4 x & =2 \\
x & =\frac{2}{4} \\
x & =\frac{1}{2}
\end{aligned} \begin{aligned}
4 x+1 & =-3 \\
4 x & =-4 \\
x & =-1 \\
& x=\frac{1}{2}, \quad x=-1
\end{aligned}
$$

5. $|3 x-7|=|4 x+2|$

Rewriting the equation, we get

$$
\begin{array}{c|c}
\\
3 x-7=4 x+2 & \begin{array}{c}
3 x-7=-(4 x+2) \\
3 x-7 \\
-x-7=2 \\
-x=9 \\
7 x-7
\end{array} \\
x=-9 & x=-2 \\
7 x=5 \\
x=-9, & x=\frac{5}{7}
\end{array}
$$

6. $|2 x-3|<5$

Rewriting this inequality, we get

$$
\begin{gathered}
-5<2 x-3<5 \\
-2<2 x<8 \\
-1<x<4
\end{gathered}
$$

$$
-1<x<4
$$

7. $|3 x+5| \geq 7$

Rewriting this expression, we get

$$
\begin{aligned}
3 x+5 & \geq 7 \\
3 x & \geq 2 \\
x & \geq \frac{2}{3}
\end{aligned} \begin{array}{r}
3 x+5 \leq-7 \\
3 x \leq-12 \\
x \leq-4
\end{array}
$$

8. $|2-5 x|-3 \leq 9$

First, we need to isolate the absolute value.

$$
\begin{aligned}
|2-5 x|-3 & \leq 9 \\
|2-5 x| & \leq 12
\end{aligned}
$$

Rewriting this inequality, we get

$$
\begin{gathered}
-12 \leq 2-5 x \leq 12 \\
-14 \leq-5 x \leq 10 \\
\frac{14}{5} \geq x \geq-2 \\
-2 \leq x \leq \frac{14}{5}
\end{gathered}
$$

9. $5-|2 x+4|<1$

First, we need to isolate the absolute value.

$$
\begin{aligned}
5-|2 x+4| & <1 \\
-|2 x+4| & <-4 \\
|2 x+4| & >4
\end{aligned}
$$

Rewriting the inequality, we get

$$
\left.\begin{aligned}
2 x+4 & >4 \\
2 x & >0 \\
x & >0
\end{aligned} \right\rvert\, \begin{array}{r}
2 x+4<-4 \\
2 x<-8 \\
x<-4
\end{array}
$$

