Definition:

- Logarithmic function: Let a be a positive number with $a \neq 1$. The logarithmic function with base a, denoted $\log _{a} x$, is defined by

$$
y=\log _{a} x \quad \text { if and only if } \quad x=a^{y} .
$$

Important Formulas:

- Compound Interest: is calculated by the formula

$$
A(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

where

$$
\begin{aligned}
A(t) & =\text { amount after } t \text { years } \\
P & =\text { principal } \\
r & =\text { interest rate } \\
n & =\text { number of times the interest is compounded per year } \\
t & =\text { number of years }
\end{aligned}
$$

- Compounded Continuously Interest: is calculated by the formula

$$
A(t)=P e^{r t}
$$

where

$$
\begin{aligned}
A(t) & =\text { amount after } t \text { years } \\
P & =\text { principal } \\
r & =\text { interest rate } \\
t & =\text { number of years }
\end{aligned}
$$

- Exponential Growth: of a population increases according to the formula

$$
P(t)=P_{0} e^{r t}
$$

where

$$
\begin{aligned}
P(t) & =\text { population after time } t \\
P_{0} & =\text { initial population } \\
r & =\text { growth rate } \\
t & =\text { time }
\end{aligned}
$$

Exponential Decay: of a substance is given by the following formula

$$
m(t)=m_{0} e^{-r t}
$$

where

$$
\begin{aligned}
m(t) & =\text { mass remaining after time } t \\
m_{0} & =\text { initial mass } \\
r & =\text { decay rate } \\
t & =\text { time }
\end{aligned}
$$

Its half-life is given by $h=\frac{\ln 2}{r}$.

PROBLEMS

1. How long will it take for an investment of $\$ 2000$ to double in value if the interest rate is 7.25% per year, compounded continuously?

Here, $P=2000$ so $A(t)=4000$. Also, $r=.0725$ and t is what we are solving for. Substituting all known values into the compounded continuous interest formula, we get

$$
\begin{aligned}
A(t) & =P e^{r t} \\
4000 & =2000 e^{.0725 t} \\
2 & =e^{.0725 t} \\
\ln 2 & =\ln e^{.0725 t} \\
\ln 2 & =.0725 t \ln e \\
\ln 2 & =.0725 t \\
\frac{\ln 2}{.0725} & =\frac{.0725 t}{.0725} \\
\frac{\ln 2}{.0725} & =t \\
9.560650766 & =t
\end{aligned}
$$

Approximately 9.5 years
2. The deer population at the local reserve grows exponentially. The current population is 125 deer and the relative growth rate is 16% per year. Find the number of years required for the deer population to be 400 .

Here, $P_{0}=125, r=.16$ and we want to find t so that $A(t)=400$. Substituting into the exponential growth formula and solving for t, we get

$$
\begin{aligned}
P(t) & =P_{0} e^{r t} \\
400 & =125 e^{.16 t} \\
3.2 & =e^{.16 t} \\
\ln 3.2 & =\ln e^{.16 t} \\
\ln 3.2 & =.16 t \ln e \\
\ln 3.2 & =.16 t \\
\frac{\ln 3.2}{.16} & =t \\
7.269692561 & =t
\end{aligned}
$$

Approximately 7.3 years
3. Oskie-946 has a decay rate of 13.5%. If the original sample was 50 grams, how long will it take for only 10 grams of the sample to remain?

Here, we know that $r=.135, m_{0}=50$ and we want to find t so that $m(t)=10$. Substituting into the exponential decay formula, we get

$$
\begin{aligned}
m(t) & =m_{0} e^{-r t} \\
10 & =50 e^{-.135 t} \\
.2 & =e^{-.135 t} \\
\ln .2 & =\ln e^{-.135 t} \\
\ln .2 & =-.135 t \ln e \\
\ln .2 & =-.135 t \\
\frac{\ln .2}{-.135} & =t \\
11.92176231 & =t
\end{aligned}
$$

Approximately 12 years
4. If a 325 mg sample of radioactive material decays to 195 mg in 72 hours, find the half-life of the element.

Recall, that half-life $h=\frac{\ln 2}{r}$. Therefore, we need to find the decay rate r. To do this, we substitute $m_{0}=325, \quad m(t)=195$ and $t=72$ into the exponential decay formula and solve for r.

$$
\begin{aligned}
m(t) & =m_{0} e^{-r t} \\
195 & =325 e^{-72 r} \\
.6 & =e^{-72 r} \\
\ln .6 & =\ln e^{-72 r} \\
\ln .6 & =-72 r \ln e \\
\ln .6 & =-72 r \\
\frac{\ln .6}{-72} & =r \\
.0070948003 & =r
\end{aligned}
$$

Therefore, substituting this into the formula for half-life, we get

$$
h=\frac{\ln 2}{r}=\frac{\ln 2}{.0070948003}=97.69791232
$$

Half-life is approximately 97.7 hours
5. If $\$ 2500$ was invested 6 years ago, and the interest was compounded quarterly, what was the interest rate if the current value is $\$ 3425$?

Here, $P_{0}=2500, \quad t=6, \quad n=4$, and $A(t)=3425$. Substituting into the compound interest formula we get

$$
\begin{aligned}
A(t) & =P_{0}\left(1+\frac{r}{n}\right)^{n t} \\
3425 & =2500\left(1+\frac{r}{4}\right)^{4 \cdot 6} \\
3425 & =2500\left(1+\frac{r}{4}\right)^{24} \\
1.37 & =\left(1+\frac{r}{4}\right)^{24} \\
(1.37)^{1 / 24} & =\left(1+\frac{r}{4}\right) \\
1.013203521 & =1+\frac{r}{4} \\
.013203521 & =\frac{r}{4} \\
4(.013203521) & =r \\
.0528140836 & =r
\end{aligned}
$$

6. If $\$ 2500$ is invested at an interest rate of 6.5%, compounded monthly, how long will it take for the investment to reach $\$ 7500$?

Here, $P=2500, \quad r=.065, \quad n=12$ and we want to find t so that $A(t)=7500$. Substituting into the compound interest formula, we get

$$
\begin{aligned}
A(t) & =P\left(1+\frac{r}{n}\right)^{n t} \\
7500 & =2500\left(1+\frac{.065}{12}\right)^{12 t} \\
3 & =(1.005416667)^{12 t} \\
\log 3 & =\log (1.005416667)^{12 t} \\
\log 3 & =12 t \log (1.005416667)
\end{aligned}
$$

$$
\frac{\log 3}{12 \log (1.005416667)}=t
$$

$$
16.94746078=t
$$

Approximately 17 years

