Definition:

- Logarithmic function: Let a be a positive number with $a \neq 1$. The logarithmic function with base a, denoted $\log _{a} x$, is defined by

$$
y=\log _{a} x \quad \text { if and only if } \quad x=a^{y} .
$$

$\underline{\text { Laws of Logarithms: Let } a \text { be a positive number with } a \neq 1 \text {. Let } A>0, B>0 \text {, and } n \text { be any real }}$ number.

1. $\log _{a} A B=\log _{a} A+\log _{a} B$. (The logarithm of a product is the sum of the logarithms.)
2. $\log _{a}\left(\frac{A}{B}\right)=\log _{a} A-\log _{a} B$.
(The logarithm of a quotient is the difference of the logarithms.)
3. $\log _{a} A^{n}=n \log _{a} A$. (The logarithm of a quantity raised to a power is the same as the power times the logarithm of the quantity.)

Important Properties:

- Change of base formula:

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

- The change of base formula allows you to use your calculator to evaluate logarithms. In order to use the calculator, a must be either 10 or e.

Common Mistakes to Avoid:

- $\log _{a}(A \pm B) \neq \log _{a} A \pm \log _{a} B$. In other words, there is no law of logarithms corresponding to the logarithm of a sum or difference.
- $\left(\log _{a} A\right)^{n} \neq n \log _{a} A$. When the entire logarithm is raised to the n-th power, you cannot use the 3rd law of logarithms to bring down the exponent.
- $\log _{a} A-\log _{a} B \neq \frac{\log _{a} A}{\log _{a} B}$. The difference of the logarithms is not the same as the quotient of the logarithms.
- $\log _{a} A B \neq\left(\log _{a} A\right)\left(\log _{a} B\right)$. The logarithm of a product is equal to the sum of the logarithms NOT the product of the logarithms.

PROBLEMS

1. Use the laws of logarithms to rewrite the expression in a form with no logarithm of a product, quotient, or power.
(a) $\log _{2} x^{3}(x-4)^{7}$

$$
\begin{aligned}
\log _{2} x^{3}(x-4)^{7} & =\log _{2} x^{3}+\log _{2}(x-4)^{7} \\
& =3 \log _{2} x+7 \log _{2}(x-4)
\end{aligned}
$$

$$
3 \log _{2} x+7 \log _{2}(x-4)
$$

(b) $\log \left(\frac{x^{2}(x+1)^{6}}{(x-3)^{5}}\right)$

$$
\begin{aligned}
\log \left(\frac{x^{2}(x+1)^{6}}{(x-3)^{5}}\right) & =\log x^{2}(x+1)^{6}-\log (x-3)^{5} \\
& =\log x^{2}+\log (x+1)^{6}-\log (x-3)^{5} \\
& =2 \log x+6 \log (x+1)-5 \log (x-3)
\end{aligned}
$$

$$
2 \log x+6 \log (x+1)-5 \log (x-3)
$$

(c) $\log _{3}\left(\frac{x^{3}}{\sqrt{x+1}(x-9)^{7}}\right)$

$$
\begin{aligned}
\log _{3}\left(\frac{x^{3}}{\sqrt{x+1}(x-9)^{7}}\right) & =\log _{3} x^{3}-\log _{3} \sqrt{x+1}(x-9)^{7} \\
& =\log _{3} x^{3}-\log _{3} \sqrt{x+1}-\log _{3}(x-9)^{7} \\
& =3 \log _{3} x-\frac{1}{2} \log _{3}(x+1)-7 \log _{3}(x-9)
\end{aligned}
$$

$$
3 \log _{3} x-\frac{1}{2} \log _{3}(x+1)-7 \log _{3}(x-9)
$$

(d) $\log _{5}\left(\frac{x(x-4)^{2}}{(x+1)^{3}}\right)^{2}$

$$
\begin{aligned}
\log _{5}\left(\frac{x(x-4)^{2}}{(x+1)^{3}}\right)^{2} & =\log _{5} \frac{x^{2}(x-4)^{4}}{(x+1)^{6}} \\
& =\log _{5} x^{2}(x-4)^{4}-\log _{5}(x+1)^{6} \\
& =\log _{5} x^{2}+\log _{5}(x-4)^{4}-\log _{5}(x+1)^{6} \\
& =2 \log _{5} x+4 \log _{5}(x-4)-6 \log _{5}(x+1)
\end{aligned}
$$

$$
2 \log _{5} x+4 \log _{5}(x-4)-6 \log _{5}(x+1)
$$

(e) $\ln \left(\frac{x^{4} \sqrt[3]{z}}{\sqrt{y^{2}+3}}\right)$

$$
\begin{aligned}
& \ln \left(\frac{x^{4} \sqrt[3]{z}}{\sqrt{y^{2}+3}}\right)=\ln x^{4} \sqrt[3]{z}-\ln \sqrt{y^{2}+3} \\
&=\ln x^{4}+\ln \sqrt[3]{z}-\ln \sqrt{y^{2}+3} \\
&=4 \ln x+\frac{1}{3} \ln z-\frac{1}{2} \ln \left(y^{2}+3\right) \\
& 4 \ln x+\frac{1}{3} \ln z-\frac{1}{2} \ln \left(y^{2}+3\right)
\end{aligned}
$$

2. Rewrite the expression as a single logarithm.
(a) $5 \log z-3 \log x+7 \log y$

$$
\begin{aligned}
& 5 \log z-3 \log x+7 \log y=\log z^{5}-\log x^{3}+\log y^{7} \\
&=\log \frac{z^{5}}{x^{3}}+\log y^{7} \\
&=\log \frac{z^{5} y^{7}}{x^{3}} \\
& \log \frac{z^{5} y^{7}}{x^{3}}
\end{aligned}
$$

(b) $3 \ln (x-2)-5[\ln x-2 \ln (x+1)]$

$$
\begin{aligned}
& 3 \ln (x-2)-5[\ln x-2 \ln (x+1)]=3 \ln (x-2)-5 \ln x+10 \ln (x+1) \\
&=\ln (x-2)^{3}-\ln x^{5}+\ln (x+1)^{10} \\
&=\ln \frac{(x-2)^{3}}{x^{5}}+\ln (x+1)^{10} \\
&=\ln \frac{(x-2)^{3}(x+1)^{10}}{x^{5}} \\
& \ln \frac{(x-2)^{3}(x+1)^{10}}{x^{5}}
\end{aligned}
$$

(c) $\frac{1}{4} \log (3 x-2)+\frac{1}{2}[\log (x-2)-\log (x+7)]$

$$
\begin{aligned}
\frac{1}{4} \log (3 x-2)+\frac{1}{2}[\log (x-2)-\log (x+7)] & =\frac{1}{4} \log (3 x-2)+\frac{1}{2} \log \frac{x-2}{x+7} \\
& =\log \sqrt[4]{3 x-2}+\log \sqrt{\frac{x-2}{x+7}} \\
& =\log \sqrt[4]{3 x-2} \sqrt{\frac{x-2}{x+7}}
\end{aligned}
$$

$$
\log \sqrt[4]{3 x-2} \sqrt{\frac{x-2}{x+7}}
$$

(d) $4[\ln x-\ln (x+5)]-2 \ln (x-5)$

$$
\begin{aligned}
& 4[\ln x-\ln (x+5)]-2 \ln (x-5)=4 \ln x-4 \ln (x+5)-2 \ln (x-5) \\
&=\ln x^{4}-\ln (x+5)^{4}-\ln (x-5)^{2} \\
&=\ln \frac{x^{4}}{(x+5)^{4}}-\ln (x-5)^{2} \\
&=\ln \frac{x^{4}}{(x+5)^{4}(x-5)^{2}} \\
& \ln \frac{x^{4}}{(x+5)^{4}(x-5)^{2}}
\end{aligned}
$$

3. Use the change of base formula and a calculator to evaluate the logarithm correct to four decimal places.
(a) $\log _{7} 3$

We will switch to base 10. Therefore,

$$
\log _{7} 3=\frac{\log 3}{\log 7}=.5645750341
$$

$$
\log _{7} 3=.5646
$$

(b) $\log _{12} 8$

This time we will switch to base e. Thus,

$$
\begin{gathered}
\log _{12} 8=\frac{\ln 8}{\ln 12}=.836828837 . \\
\log _{12} 8=.8368
\end{gathered}
$$

