Definition:

- A linear equation in one variable can be written in the form

$$
a x+b=c
$$

for real numbers a, b, and c, with $a \neq 0$.

Important Properties:

- Addition Property of Equality: If a, b, and c are real numbers, then

$$
a=b \quad \text { and } \quad a+c=b+c
$$

are equivalent equations. (That is, you can add or subtract the same quantity on both sides of the equation without changing the solution.)

- Multiplication Property of Equality: If a, b, and c are real numbers and $c \neq 0$, then

$$
a=b \quad \text { and } \quad a c=b c
$$

are equivalent equations. (That is, you can multiply or divide the same nonzero quantity on both sides of the equation without changing the solution.)

Common Mistakes to Avoid:

- When clearing the parentheses in an expression like $7-(2 x-4)$, remember that the minus sign acts like a factor of -1 . After using the distributive property, the sign of every term in the parentheses will be changed to give $7-2 x+4$.
- To clear fractions from an equation, multiply every term on each side by the lowest common denominator. Remember that $\frac{3 x}{2}(x-2)$ is considered one term, whereas, $\frac{3 x^{2}}{2}-3 x$ is considered two terms. To avoid a mistake, clear all parentheses using the distributive property before multiplying every term by the common denominator.
- To preserve the solution to an equation, remember to perform the same operation on both sides of the equation.

PROBLEMS

Solve for x in each of the following equations:

1. $9 x+3=7 x-2$

$$
\begin{aligned}
9 x+3 & =7 x-2 \\
-3 & -3 \\
9 x & =7 x-5 \\
-7 x & =-7 x \\
2 x & =-5 \\
\frac{2 x}{2} & =\frac{-5}{2} \\
x & =\frac{-5}{2} \\
x & =\frac{-5}{2}
\end{aligned}
$$

2. $0.8 x=6.0 x-31.2$

$$
\begin{aligned}
0.8 x & = & 6.0 x-31.2 \\
-6.0 x & & -6.0 x \\
-5.2 x & = & -31.2 \\
\frac{-5.2 x}{-5.2} & = & \frac{-31.2}{-5.2} \\
x & = & 6
\end{aligned}
$$

$$
x=6
$$

3. $-x+8-x=3 x+9-2$

$$
\begin{array}{rlc}
-x+8-x & = & 3 x+9-2 \\
-2 x+8 & = & 3 x+7 \\
-8 & -8 \\
-2 x & = & 3 x-1 \\
-3 x & & -3 x \\
-5 x & = & -1 \\
\frac{-5 x}{-5} & = & \frac{-1}{-5} \\
x & = & \frac{1}{5} \\
x & =\frac{1}{5}
\end{array}
$$

4. $\quad 3(x-7)=-2(2 x+3)$

$$
\begin{array}{rlr}
3(x-7) & = & -2(2 x+3) \\
3 x-21 & = & -4 x-6 \\
+4 x & & +4 x \\
7 x-21 & = & -6 \\
+21 & & +21 \\
7 x & = & 15 \\
\frac{7 x}{7} & = & \frac{15}{7} \\
x & = & \frac{15}{7}
\end{array}
$$

$$
x=\frac{15}{7}
$$

5. $7 x-3(5-x)=10$

$$
\begin{aligned}
& 7 x-3(5-x)=10 \\
& 7 x-15+3 x= \\
& 10 x-15= \\
&+15+15 \\
& 10 x= \\
& \frac{10 x}{10}=\frac{25}{10} \\
& x= \\
& \frac{25}{10} \\
& x=\frac{5}{2} \\
& x=\frac{5}{2}
\end{aligned}
$$

6. $0.2(x+3)-(x-1.5)=0.3(x+2)-2.9$

$$
\begin{array}{rlc}
0.2(x+3)-(x-1.5) & = & 0.3(x+2)-2.9 \\
0.2 x+0.6-x+1.5 & = & 0.3 x+0.6-2.9 \\
-0.8 x+2.1 & = & 0.3 x-2.3 \\
-2.1 & & -2.1 \\
-0.8 x & = & 0.3 x-4.4 \\
-0.3 x & & -0.3 x \\
-1.1 x & = & -4.4 \\
\frac{-1.1 x}{-1.1} & = & \frac{-4.4}{-1.1} \\
x & = & 4
\end{array}
$$

$$
x=4
$$

7. $6(2 x+8)=4(3 x-6)$

$$
\begin{array}{rrr}
6(2 x+8) & = & 4(3 x-6) \\
12 x+48 & = & 12 x-24 \\
+24 & & +24 \\
12 x+72 & = & 12 x \\
-12 x & & -12 x \\
72 & = & 0
\end{array}
$$

No Solution

NOTE: Whenever the variable disappears and a false statement (such as $72=0$) results, the equation has no solution.
8. $10(-2 x+1)=-5(3 x-2)-5 x$

$$
\begin{array}{rcc}
10(-2 x+1) & = & -5(3 x-2)-5 x \\
-20 x+10 & = & -15 x+10-5 x \\
-20 x+10 & = & -20 x+10 \\
-10 & & -10 \\
-20 x & = & -20 x \\
+20 x & & +20 x \\
0 & = & 0
\end{array}
$$

All real numbers

NOTE: Whenever the variable disappears and a true statement (such as $0=0$) results, the equation is an identity. An identity is true regardless of the number substituted into the variable. As a result, we write "all real numbers" as our answer.
9. $4(7 x-2)+3(2-3 x)=3(4 x-5)-6$
10. $-7(2-3 x)-4(-2 x+5)=7-3(5-2 x)$

$$
\begin{array}{rlc}
-7(2-3 x)-4(-2 x+5) & =7-3(5-2 x) \\
-14+21 x+8 x-20 & =7-15+6 x \\
29 x-34 & =6 x-8 \\
+34 & +34 \\
29 x & =6 x+26 \\
-6 x & & -6 x \\
23 x & =\quad 26 \\
\frac{23 x}{23} & =\frac{26}{23} \\
x & =\frac{26}{23}
\end{array}
$$

$$
x=\frac{26}{23}
$$

$$
\begin{aligned}
& 4(7 x-2)+3(2-3 x)=3(4 x-5)-6 \\
& 28 x-8+6-9 x=12 x-15-6 \\
& 19 x-2=12 x-21 \\
& +2 \quad+2 \\
& 19 x=12 x-19 \\
& -12 x \quad-12 x \\
& 7 x \quad=\quad-19 \\
& \frac{7 x}{7} \quad=\quad \frac{-19}{7} \\
& x=\frac{-19}{7} \\
& x=\frac{-19}{7}
\end{aligned}
$$

11. $\frac{x}{3}+3=\frac{x}{5}-\frac{1}{3}$

NOTE: Multiplying each term by the lowest common denominator of 15 will eliminate all fractions.

$$
\begin{array}{rlrl}
\frac{x}{3}+3 & =\frac{x}{5} & -\frac{1}{3} \\
15\left(\frac{x}{3}\right)+15(3) & = & 15\left(\frac{x}{5}\right) & -15\left(\frac{1}{3}\right) \\
\frac{15 x}{3}+45 & =\frac{15 x}{5} & & -\frac{15}{3} \\
5 x+45 & = & 3 x & - \\
5 x & & -45 \\
5 x & & -45 \\
-3 x & & -50 \\
2 x & & -25 & -50 \\
\frac{2 x}{2} & & \\
x & x & =-25
\end{array}
$$

12. $\frac{2 x+3}{7}=\frac{x}{4}-\frac{1}{2}$

NOTE: Multiplying each term by the lowest common denominator of 28 will eliminate all fractions.

$$
\begin{aligned}
& \frac{2 x}{7}+\frac{3}{7}=\frac{x}{4} \\
& 28\left(\frac{2 x}{7}\right)+28\left(\frac{3}{7}\right)=28\left(\frac{1}{4}\right)-28\left(\frac{1}{2}\right) \\
& \frac{56 x}{7}+\frac{84}{7}=\frac{28 x}{4} \\
& 8 x+12=7 x \\
&-12-\frac{28}{2} \\
& 8 x=-14 \\
&-7 x \\
& x-7 x \\
& x=-26
\end{aligned}
$$

13. $-\frac{1}{2}(x-12)+\frac{1}{4}(x+2)=x+4$

NOTE: Multiplying each term by the lowest common denominator of 4 will eliminate all fractions.

$$
\begin{aligned}
& -\frac{x}{2}+\frac{12}{2}+\frac{x}{4}+\frac{2}{4} \quad=\quad x+4 \\
& 4\left(-\frac{x}{2}\right)+4\left(\frac{12}{2}\right)+4\left(\frac{x}{4}\right)+4\left(\frac{2}{4}\right)=4(x)+4(4) \\
& \frac{-4 x}{2}+\frac{48}{2}+\frac{4 x}{4}+\frac{8}{4}=4 x+16 \\
& -2 x+24+x+2=4 x+16 \\
& -x+26=4 x+16 \\
& -26 \quad-26 \\
& -x \quad=\quad 4 x-10 \\
& -4 x \quad-4 x \\
& -5 x \quad=\quad-10 \\
& \frac{-5 x}{5} \quad=\quad \frac{-10}{-5} \\
& x \quad=\quad 2 \\
& x=2
\end{aligned}
$$

