MATH 11011

LOGARITHMIC FUNCTIONS

Definitions:

• Logarithmic function: Let a be a positive number with $a \neq 1$. The logarithmic function with base a, denoted $\log_a x$, is defined by

$$y = \log_a x$$
 if and only if $x = a^y$.

• **Common logarithm**: The logarithm with base 10 is called the common logarithm. The base 10 is usually omitted when working with the common logarithm.

$$\log_{10} x = \log x.$$

• Natural logarithm: The logarithm with base *e* is called the natural logarithm and is denoted by

$\log_e x$	$= \ln x.$
------------	------------

Properties of logarithms: Let *a* be a positive number such that $a \neq 1$. Then

- $\log_a 1 = 0$
- $\log_a a = 1$
- $\log_a a^x = x$
- $a^{\log_a x} = x$

Other Important Properties:

- $y = \log_a x$ is read: "y is the exponent you place on a in order to get x." A logarithm is an exponent.
- The definition of the logarithm allows us to switch from the logarithmic form of $y = \log_a x$ to the exponential form of $x = a^y$ and back again.
- A logarithmic function is the inverse of an exponential function. An exponential function is the inverse of a logarithmic function.
- You cannot take the logarithm of a negative number or zero.

Properties of the graph of $y = \log_a x$:

- Domain is $(0, \infty)$.
- Range is all real numbers.
- Always crosses through the point (1,0).
- x = 0 is a vertical asymptote.
- If a > 1, then the function is increasing; if 0 < a < 1, then the function is decreasing.

PROBLEMS

- 1. Express the equation in logarithmic form:
 - (a) $2^5 = 32$

Here, a = 2, y = 5 and x = 32. Thus,

 $5 = \log_2 32$

(b) $3^{-3} = \frac{1}{27}$

Here, a = 3, y = -3 and $x = \frac{1}{27}$. Therefore,

 $-3 = \log_3 \frac{1}{27}$

- 2. Express the equation in exponential form:
 - (a) $-2 = \log_7 \frac{1}{49}$

Here, a = 7, y = -2 and $x = \frac{1}{49}$. Therefore,

$$7^{-2} = \frac{1}{49}$$

(b) $3 = \log_2 8$

Here, a = 2, y = 3 and x = 8. Thus,

$$2^3 = 8$$

3. Solve for the missing variable.

(a) $\log_2 16 = y$

 $\log_2 16 = y$ $2^y = 16$ $2^y = 2^4$ y = 4

 $\log_2 16 = 4$

(b) $\log_3 \frac{1}{81} = y$

 $\log_3 \frac{1}{81} = y$ $3^y = \frac{1}{81}$ $3^y = \frac{1}{3^4}$ $3^y = 3^{-4}$ y = -4

$$\log_3 \frac{1}{81} = -4$$

(c) $\log_8 2 = y$

$$\log_8 2 = y$$

$$8^y = 2$$

$$8^y = 2$$

$$(2^3)^y = 2$$

$$2^{3y} = 2^1$$

$$3y = 1$$

$$y = \frac{1}{3}$$

$$\log_8 2 = \frac{1}{3}$$

(d) $\log_a \frac{1}{25} = -2$

$$\log_a \frac{1}{25} = -2$$
$$a^{-2} = \frac{1}{25}$$
$$\frac{1}{a^2} = \frac{1}{25}$$
$$a^2 = 25$$
$$\sqrt{a^2} = \sqrt{25}$$
$$a = 5$$

NOTE: a must be a positive number.

$$\log_5 \frac{1}{25} = -2$$

(e)
$$\log_a 8 = \frac{3}{2}$$

 $\log_a 8 = \frac{3}{2}$
 $a^{3/2} = 8$
 $(a^{3/2})^{2/3} = 8^{2/3}$
 $a = (\sqrt[3]{8})^2$
 $a = 2^2$
 $a = 4$
 $\log_4 8 = \frac{3}{2}$

(f) $\log_3 x = 2$

$$\log_3 = 2$$
$$x = 3^2$$
$$x = 9$$

 $\log_3 9 = 2$

4. Find the domain of each function.

(a)
$$f(x) = \log_3(2x - 1)$$

Since we cannot take the logarithm of a negative number or zero, 2x - 1 must be a positive number. Hence,

$$2x - 1 > 0$$
$$2x > 1$$
$$x > \frac{1}{2}$$
Domain: $x > \frac{1}{2}$

(b)
$$f(x) = \log_5(5 - 3x)$$

Since we cannot take the logarithm of a negative number or zero, 5-3x must be positive. Hence,

$$5 - 3x > 0$$
$$-3x > -5$$
$$x < \frac{5}{3}$$

Domain:
$$x < \frac{5}{3}$$