Definitions:

- Logarithmic function: Let a be a positive number with $a \neq 1$. The logarithmic function with base a, denoted $\log _{a} x$, is defined by

$$
y=\log _{a} x \quad \text { if and only if } \quad x=a^{y} .
$$

- Common logarithm: The logarithm with base 10 is called the common logarithm. The base 10 is usually omitted when working with the common logarithm.

$$
\log _{10} x=\log x
$$

- Natural logarithm: The logarithm with base e is called the natural logarithm and is denoted by

$$
\log _{e} x=\ln x
$$

- $\log _{a} 1=0$
- $\log _{a} a=1$
- $\log _{a} a^{x}=x$
- $a^{\log _{a} x}=x$

Other Important Properties:

- $y=\log _{a} x$ is read: " y is the exponent you place on a in order to get $x . "$ A logarithm is an exponent.
- The definition of the logarithm allows us to switch from the logarithmic form of $y=\log _{a} x$ to the exponential form of $x=a^{y}$ and back again.
- A logarithmic function is the inverse of an exponential function. An exponential function is the inverse of a logarithmic function.
- You cannot take the logarithm of a negative number or zero.
$\underline{\text { Properties of the graph of } y=\log _{a} x}$:
- Domain is $(0, \infty)$.
- Range is all real numbers.
- Always crosses through the point $(1,0)$.
- $x=0$ is a vertical asymptote.
- If $a>1$, then the function is increasing; if $0<a<1$, then the function is decreasing.

PROBLEMS

1. Express the equation in logarithmic form:
(a) $2^{5}=32$

Here, $a=2, \quad y=5$ and $x=32$. Thus,

$$
5=\log _{2} 32
$$

(b) $3^{-3}=\frac{1}{27}$

Here, $a=3, \quad y=-3$ and $x=\frac{1}{27}$. Therefore,

$$
-3=\log _{3} \frac{1}{27}
$$

2. Express the equation in exponential form:
(a) $-2=\log _{7} \frac{1}{49}$

Here, $a=7, \quad y=-2$ and $x=\frac{1}{49}$. Therefore,

$$
7^{-2}=\frac{1}{49}
$$

(b) $3=\log _{2} 8$

Here, $a=2, \quad y=3$ and $x=8$. Thus,

$$
2^{3}=8
$$

3. Solve for the missing variable.
(a) $\log _{2} 16=y$

$$
\begin{aligned}
\log _{2} 16 & =y \\
2^{y} & =16 \\
2^{y} & =2^{4} \\
y & =4
\end{aligned}
$$

$$
\log _{2} 16=4
$$

(b) $\log _{3} \frac{1}{81}=y$

$$
\begin{aligned}
\log _{3} \frac{1}{81} & =y \\
3^{y} & =\frac{1}{81} \\
3^{y} & =\frac{1}{3^{4}} \\
3^{y} & =3^{-4} \\
y & =-4
\end{aligned}
$$

$$
\log _{3} \frac{1}{81}=-4
$$

(c) $\log _{8} 2=y$

$$
\begin{aligned}
\log _{8} 2 & =y \\
8^{y} & =2 \\
8^{y} & =2 \\
\left(2^{3}\right)^{y} & =2 \\
2^{3 y} & =2^{1} \\
3 y & =1 \\
y & =\frac{1}{3} \\
& \\
\log _{8} 2 & =\frac{1}{3}
\end{aligned}
$$

(d) $\log _{a} \frac{1}{25}=-2$

$$
\begin{aligned}
\log _{a} \frac{1}{25} & =-2 \\
a^{-2} & =\frac{1}{25} \\
\frac{1}{a^{2}} & =\frac{1}{25} \\
a^{2} & =25 \\
\sqrt{a^{2}} & =\sqrt{25} \\
a & =5
\end{aligned}
$$

NOTE: a must be a positive number.

$$
\log _{5} \frac{1}{25}=-2
$$

(e) $\log _{a} 8=\frac{3}{2}$

$$
\begin{aligned}
\log _{a} 8 & =\frac{3}{2} \\
a^{3 / 2} & =8 \\
\left(a^{3 / 2}\right)^{2 / 3} & =8^{2 / 3} \\
a & =(\sqrt[3]{8})^{2} \\
a & =2^{2} \\
a & =4 \\
\log _{4} 8 & =\frac{3}{2}
\end{aligned}
$$

(f) $\log _{3} x=2$

$$
\begin{aligned}
\log _{3} & =2 \\
x & =3^{2} \\
x & =9
\end{aligned}
$$

$$
\log _{3} 9=2
$$

4. Find the domain of each function.
(a) $f(x)=\log _{3}(2 x-1)$

Since we cannot take the logarithm of a negative number or zero, $2 x-1$ must be a positive number. Hence,

$$
\begin{array}{r}
2 x-1>0 \\
2 x>1 \\
x>\frac{1}{2}
\end{array}
$$

Domain: $x>\frac{1}{2}$
(b) $f(x)=\log _{5}(5-3 x)$

Since we cannot take the logarithm of a negative number or zero, $5-3 x$ must be positive. Hence,

$$
\begin{aligned}
5-3 x & >0 \\
-3 x & >-5 \\
x & <\frac{5}{3}
\end{aligned}
$$

Domain: $x<\frac{5}{3}$

