Definition:

- Radical equation: is an equation with one or more radical expressions.

Important Properties:

- If both sides of an equation are raised to the same power, all solutions of the original equation are also solutions of the new equation.
- When solving an equation involving a even indexed radical, you must always check your "answers" in the original equation. We may end up with one or more extraneous solutions. Extraneous solutions may be introduced when we raise both sides of an equation to an even power.

Solving an equation involving a radical:

1. Isolate the radical. Make sure that one radical term is alone on one side of the equation.
2. Raise both sides of the equation to the same power that is the same as the index on the radical.
3. Solve the resulting equation. If it still contains a radical, repeat steps 1 and 2.
4. Check your possible solutions in the original equation. Exclude any that result in a false statement.

Common Mistakes to Avoid:

- Remember to raise both sides of the equation to the same power. Do NOT raise each term to the same power. For example, if $a+b=c$ then raising both sides to the same power we get $(a+b)^{n}=c^{n}$. We do NOT get $a^{n}+b^{n}=c^{n}$.
- Remember that $(x+y)^{2} \neq x^{2}+y^{2}$. Instead, $(x+y)^{2}=x^{2}+2 x y+y^{2}$. Do not forget the middle term. (Note, this formula arises from foil).
- Do NOT forget to check your answers in the original equation.

PROBLEMS

$\underline{\text { Solve for } x \text { in each of the following equations. }}$

1. $\sqrt{x-3}=4$

Since the square root is already isolated, we start by squaring both sides and solving.

$$
\begin{aligned}
\sqrt{x-3} & =4 \\
(\sqrt{x-3})^{2} & =4^{2} \\
x-3 & =16 \\
x & =19
\end{aligned}
$$

We need to check our possible solution in the original equation.

Check: $x=19$

$$
\begin{gathered}
\sqrt{19-3}=4 \\
\sqrt{16}=4 \\
4=4 \star \\
x=4
\end{gathered}
$$

2. $\sqrt{3 x-6}-2=1$

Before we square both sides, we need to isolate the radical on one side of the equation.

$$
\begin{aligned}
\sqrt{3 x-6}-2 & =1 \\
\sqrt{3 x-6} & =3 \\
(\sqrt{3 x-6})^{2} & =3^{2} \\
3 x-6 & =9 \\
3 x & =15 \\
x & =5
\end{aligned}
$$

Check: $x=5$

$$
\begin{array}{r}
\sqrt{3(5)-6}-2=1 \\
\sqrt{15-6}-2=1 \\
\sqrt{9}-2=1 \\
3-2=1 \\
1=1 \star
\end{array}
$$

$$
x=5
$$

3. $x+\sqrt{x-4}=4$

We must isolate the radical before squaring both sides.

$$
\begin{aligned}
& x+\sqrt{x-4}=4 \\
& \sqrt{x-4}=4-x \\
&(\sqrt{x-4})^{2}=(4-x)^{2} \\
& x-4=16-8 x+x^{2} \\
& x=x^{2}-8 x+20 \\
& 0=x^{2}-9 x+20 \\
& 0=(x-4)(x-5) \\
& x-4=0 \\
& x=4
\end{aligned} \quad \begin{aligned}
x-5=0 \\
x=5
\end{aligned}
$$

Next, we must check each possible solution in the original equation.

$$
\begin{aligned}
& \text { Check: } x=4 \\
& \begin{aligned}
4+\sqrt{4-4} & =4 \\
4+0 & =4 \\
4 & =4 \star
\end{aligned}
\end{aligned}
$$

Check: $x=5$

$$
\begin{array}{r}
5+\sqrt{5-4}=4 \\
5+1=4 \\
6 \neq 4
\end{array}
$$

4. $\sqrt{x+4}-\sqrt{x-4}=2$

We must isolate one of the radicals before we can square both sides.

$$
\begin{aligned}
\sqrt{x+4}-\sqrt{x-4} & =2 \\
\sqrt{x+4} & =\sqrt{x-4}+2 \\
(\sqrt{x+4})^{2} & =(\sqrt{x-4}+2)^{2} \\
x+4 & =x-4+4 \sqrt{x-4}+4 \\
x+4 & =x+4 \sqrt{x-4} \\
4 & =4 \sqrt{x-4} \\
(4)^{2} & =(4 \sqrt{x-4})^{2} \\
16 & =16(x-4) \\
16 & =16 x-64 \\
80 & =16 x \\
5 & =x
\end{aligned}
$$

Check: $x=5$

$$
\begin{aligned}
& \sqrt{5+4}-\sqrt{5-4}=2 \\
& \sqrt{9}-\sqrt{1}=2 \\
& 3-1=2 \\
& 2=2 \star \\
& x=5
\end{aligned}
$$

5. $\sqrt[3]{x-2}+4=2$

We must isolate the radical before we can raise both sides of the equation to the third power.

$$
\begin{aligned}
\sqrt[3]{x-2}+4 & =2 \\
\sqrt[3]{x-2} & =-2 \\
(\sqrt[3]{x-2})^{3} & =(-2)^{3} \\
x-2 & =-8 \\
x & =-6
\end{aligned}
$$

$$
x=-6
$$

6. $\sqrt{2 x+3}-\sqrt{x-2}=2$

We first need to isolate one of the radicals on one side.

$$
\begin{aligned}
\sqrt{2 x+3}-\sqrt{x-2} & =2 \\
\sqrt{2 x+3} & =\sqrt{x-2}+2 \\
(\sqrt{2 x+3})^{2} & =(\sqrt{x-2}+2)^{2} \\
2 x+3 & =x-2+4 \sqrt{x-2}+4 \\
2 x+3 & =x+2+4 \sqrt{x-2} \\
x+1 & =4 \sqrt{x-2} \\
(x+1)^{2} & =(4 \sqrt{x-2})^{2} \\
x^{2}+2 x+1 & =16(x-2) \\
x^{2}+2 x+1 & =16 x-32 \\
x^{2}-14 x+33 & =0 \\
(x-11)(x-3) & =0
\end{aligned}
$$

$$
x-11=0
$$

$$
x=11
$$

$$
\begin{array}{r}
x-3=0 \\
x=3
\end{array}
$$

We now need to check our possible solutions into the original equation.

Check: $x=11$

$$
\begin{aligned}
\sqrt{2(11)+3}-\sqrt{(11)-2} & =2 \\
\sqrt{22+3}-\sqrt{9} & =2 \\
\sqrt{25}-\sqrt{9} & =2 \\
5-3 & =2 \\
2 & =2 \star
\end{aligned}
$$

Check: $x=3$

$$
\begin{aligned}
\sqrt{2(3)+3}-\sqrt{3-2} & =2 \\
\sqrt{6+3}-\sqrt{1} & =2 \\
\sqrt{9}-1 & =2 \\
3-1 & =2 \\
2 & =2 \star
\end{aligned}
$$

7. $\sqrt{2 x+5}+\sqrt{x+2}=5$

$$
\begin{aligned}
& \sqrt{2 x+5}+\sqrt{x+2}=5 \\
& \sqrt{2 x+5}=5-\sqrt{x+2} \\
&(\sqrt{2 x+5})^{2}=(5-\sqrt{x+2})^{2} \\
& 2 x+5=25-10 \sqrt{x+2}+x+2 \\
& 2 x+5=27+x-10 \sqrt{x+2} \\
& x-22=-10 \sqrt{x+2} \\
&(x-22)^{2}=(-10 \sqrt{x+2})^{2} \\
& x^{2}-44 x+484=100(x+2) \\
& x^{2}-44 x+484=100 x+200 \\
& x^{2}-144 x+284=0 \\
&(x-2)(x-142)=0 \\
& x-2=0 \quad x-142=0 \\
& x=2
\end{aligned}
$$

We now need to check our possible solutions into the original equation.
Check: $x=2$

$$
\begin{aligned}
\sqrt{2(2)+5}+\sqrt{2+2} & =5 \\
\sqrt{9}+\sqrt{4} & =5 \\
3+2 & =5 \\
5 & =5 \star
\end{aligned}
$$

Check: $x=142$

$$
\begin{aligned}
\sqrt{2(142)+5}+\sqrt{142+2} & =5 \\
\sqrt{289}+\sqrt{144} & =5 \\
17+12 & =5 \\
29 & \neq 5
\end{aligned}
$$

$$
x=2
$$

8. $\sqrt{x+3}+\sqrt{2-x}=3$

$$
\begin{aligned}
& \sqrt{x+3}+\sqrt{2-x}=3 \\
& \sqrt{x+3}=3-\sqrt{2-x} \\
&(\sqrt{x+3})^{2}=(3-\sqrt{2-x})^{2} \\
& x+3=9-6 \sqrt{2-x}+2-x \\
& x+3=11-x-6 \sqrt{2-x} \\
& 2 x-8=-6 \sqrt{2-x} \\
&(2 x-8)^{2}=(-6 \sqrt{2-x})^{2} \\
& 4 x^{2}-32 x+64=36(2-x) \\
& 4 x^{2}-32 x+64=72-36 x \\
& 4 x^{2}+4 x-8=0 \\
& 4\left(x^{2}+x-2\right)=0 \\
& 4(x+2)(x-1)=0 \\
& x+2=0 \quad \\
& x=-2 \quad x-1=0 \\
& x=1
\end{aligned}
$$

We now need to check our possible solutions into the original equation.

Check: $x=-2$

$$
\begin{aligned}
\sqrt{-2+3}+\sqrt{2-(-2)} & =3 \\
\sqrt{1}+\sqrt{4} & =3 \\
1+2 & =3 \\
3 & =3 \star
\end{aligned}
$$

Check: $x=1$

$$
\begin{aligned}
\sqrt{1+3}+\sqrt{2-1} & =3 \\
\sqrt{4}+\sqrt{1} & =3 \\
2=1 & =3 \\
3 & =3 \star
\end{aligned}
$$

$$
x=2, \quad x=1
$$

