Definitions:

- n-th roots of a : The n-th root of a, denoted $\sqrt[n]{a}$, is a number whose n-th power equals a. In other words,

$$
\sqrt[n]{a}=b \quad \text { means } \quad b^{n}=a
$$

The number n is called the index.

- Rationalizing the denominator: is the process of removing radicals from the denominator so that the expression will be in simplified form.

Important Properties:

- Quotient rule for radicals: If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and n is a positive integer,

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
$$

In other words, the radical of a quotient is the quotient of the radicals.

- Whenever a radical expression contains a sum or difference involving radicals in the denominator, we rationalize the denominator by multiplying both numerator and denominator by the conjugate of the denominator. The conjugate contains exactly the same numbers in exactly the same order with the operation sign changed. For example, the conjugate of $2+\sqrt{3}$ is $2-\sqrt{3}$ and the conjugate of $\sqrt{3}+7$ is $\sqrt{3}-7$.

Simplifying radicals: A radical is in simplest form when the following conditions are satisfied.

- The quantity under the radical has no factor raised to a power greater than or equal to the index.
- There is no fraction under the radical.
- There is no radical in the denominator.
- There is no common factor, other than 1 , between the exponents on factors under the radical and the index.

Common Mistakes to Avoid:

- Be careful when rationalizing radical expressions that involve n-th roots. For example,

$$
\sqrt[3]{2} \cdot \sqrt[3]{2} \neq 2
$$

- Do not divide (or cancel) terms that are inside a radical with those that are outside a radical. For example,

$$
\frac{\sqrt{6}}{15} \neq \frac{\sqrt{2}}{5}
$$

PROBLEMS

Rationalize the denominator in each radical expression.
Assume that all variables represent positive real numbers.

1. $\frac{2}{\sqrt{3}}$

We need to multiply both the numerator and denominator by $\sqrt{3}$.

$$
\begin{aligned}
\frac{2}{\sqrt{3}} & =\frac{2 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}} \\
& =\frac{2 \sqrt{3}}{\sqrt{9}} \\
& =\frac{2 \sqrt{3}}{3}
\end{aligned}
$$

2. $\frac{-6}{\sqrt{18}}$

First, note that $\sqrt{18}=\sqrt{9} \sqrt{2}=3 \sqrt{2}$. Therefore, we really only need to multiply the numerator and denominator by $\sqrt{2}$ in order to rationalize.

$$
\begin{aligned}
\frac{-6}{\sqrt{18}} & =\frac{-6}{3 \sqrt{2}} \\
& =\frac{-6 \cdot \sqrt{2}}{3 \sqrt{2} \cdot \sqrt{2}} \\
& =\frac{-6 \sqrt{2}}{3 \sqrt{4}} \\
& =\frac{-6 \sqrt{2}}{3 \cdot 2} \\
& =\frac{-6 \sqrt{2}}{6} \\
& =-\sqrt{2}
\end{aligned}
$$

NOTE: You can also solve this problem by multiplying both the numerator and denominator by $\sqrt{18}$ first and then simplify later.
3. $\sqrt{\frac{5}{6}}$

First, we will use the quotient rule for radicals and then multiply both numerator and denominator by $\sqrt{6}$.

$$
\begin{aligned}
\sqrt{\frac{5}{6}} & =\frac{\sqrt{5}}{\sqrt{6}} \\
& =\frac{\sqrt{5} \cdot \sqrt{6}}{\sqrt{6} \cdot \sqrt{6}} \\
& =\frac{\sqrt{30}}{\sqrt{36}} \\
& =\frac{\sqrt{30}}{6}
\end{aligned}
$$

4. $\frac{9}{\sqrt{27}}$

First note that $\sqrt{27}=\sqrt{9} \sqrt{3}=3 \sqrt{3}$. Therefore, we only need to multiply the numerator and denominator by $\sqrt{3}$ to rationalize.

$$
\begin{aligned}
\frac{9}{\sqrt{27}} & =\frac{9}{\sqrt{9} \sqrt{3}} \\
& =\frac{9}{3 \sqrt{3}} \\
& =\frac{9 \cdot \sqrt{3}}{3 \sqrt{3} \cdot \sqrt{3}} \\
& =\frac{9 \sqrt{3}}{3 \sqrt{9}} \\
& =\frac{9 \sqrt{3}}{9} \\
& =\sqrt{3}
\end{aligned}
$$

5. $\frac{5}{\sqrt[3]{2}}$

Notice that multiplying by $\sqrt[3]{2}$ will NOT eliminate the radical from the denominator. Instead, we need to multiply by $\sqrt[3]{4}$ on both top and bottom.

$$
\begin{aligned}
\frac{5}{\sqrt[3]{2}} & =\frac{5 \cdot \sqrt[3]{4}}{\sqrt[3]{2} \cdot \sqrt[3]{4}} \\
& =\frac{5 \sqrt[3]{4}}{\sqrt[3]{8}} \\
& =\frac{5 \sqrt[3]{4}}{2}
\end{aligned}
$$

6. $\sqrt[3]{\frac{4}{9}}$

As in the previous example, we will NOT eliminate the radical in the denominator by multiplying by $\sqrt[3]{9}$. Instead, we will multiply both numerator and denominator by $\sqrt[3]{3}$.

$$
\begin{aligned}
\sqrt[3]{\frac{4}{9}} & =\frac{\sqrt[3]{4}}{\sqrt[3]{9}} \\
& =\frac{\sqrt[3]{4} \cdot \sqrt[3]{3}}{\sqrt[3]{9} \cdot \sqrt[3]{3}} \\
& =\frac{\sqrt[3]{12}}{\sqrt[3]{27}} \\
& =\frac{\sqrt[3]{12}}{3}
\end{aligned}
$$

7. $\frac{2}{\sqrt{5}-3}$

To rationalize we need to multiply both numerator and denominator by $\sqrt{5}+3$ which is the conjugate of the denominator.

$$
\begin{aligned}
\frac{2}{\sqrt{5}-3} & =\frac{2(\sqrt{5}+3)}{(\sqrt{5}-3)(\sqrt{5}+3)} \\
& =\frac{2(\sqrt{5}+3)}{\sqrt{25}+3 \sqrt{5}-3 \sqrt{5}-9} \\
& =\frac{2(\sqrt{5}+3)}{5-9} \\
& =\frac{2(\sqrt{5}+3)}{-4} \\
& =\frac{-(\sqrt{5}+3)}{2}
\end{aligned}
$$

8. $\frac{1-\sqrt{2}}{\sqrt{8}+\sqrt{6}}$

To rationalize we need to multiply both numerator and denominator by $\sqrt{8}-\sqrt{6}$ which is the conjugate of the denominator.

$$
\begin{aligned}
\frac{1-\sqrt{2}}{\sqrt{8}+\sqrt{6}} & =\frac{(1-\sqrt{2})(\sqrt{8}-\sqrt{6})}{(\sqrt{8}+\sqrt{6})(\sqrt{8}-\sqrt{6})} \\
& =\frac{(1-\sqrt{2})(\sqrt{8}-\sqrt{6})}{\sqrt{64}+\sqrt{48}-\sqrt{48}-\sqrt{36}} \\
& =\frac{(1-\sqrt{2})(\sqrt{8}-\sqrt{6})}{8-6} \\
& =\frac{(1-\sqrt{2})(\sqrt{4} \sqrt{2}-\sqrt{6})}{2} \\
& =\frac{(1-\sqrt{2})(2 \sqrt{2}-\sqrt{6})}{2}
\end{aligned}
$$

9. $\frac{4}{\sqrt{x}-2 \sqrt{y}}$

We will rationalize by multiplying both numerator and denominator by $\sqrt{x}+2 \sqrt{y}$.

$$
\begin{aligned}
\frac{4}{\sqrt{x}-2 \sqrt{y}} & =\frac{4(\sqrt{x}+2 \sqrt{y})}{(\sqrt{x}-2 \sqrt{y})(\sqrt{x}+2 \sqrt{y})} \\
& =\frac{4(\sqrt{x}+2 \sqrt{y})}{\sqrt{x^{2}}-2 \sqrt{x y}+2 \sqrt{x y}-4 \sqrt{y^{2}}} \\
& =\frac{4(\sqrt{x}+2 \sqrt{y})}{x-4 y}
\end{aligned}
$$

10. $\frac{15}{\sqrt{7}+\sqrt{2}}$

We will rationalize by multiplying the numerator and denominator by $\sqrt{7}-\sqrt{2}$.

$$
\begin{aligned}
\frac{15}{\sqrt{7}+\sqrt{2}} & =\frac{15(\sqrt{7}-\sqrt{2})}{(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})} \\
& =\frac{15(\sqrt{7}-\sqrt{2})}{\sqrt{49}+\sqrt{14}-\sqrt{14}-\sqrt{4}} \\
& =\frac{15(\sqrt{7}-\sqrt{2})}{7-2} \\
& =\frac{15(\sqrt{7}-\sqrt{2})}{5} \\
& =3(\sqrt{7}-\sqrt{2})
\end{aligned}
$$

