Definitions:

- Slope: of a line tells how fast y changes for each unit of change in x.
- Linear equation in two variables: is an equation that can be written as

$$
a x+b y=c
$$

where a, b, and c are real numbers and a and b cannot both be zero.

Important Formulas:

- Slope formula: The slope of the line through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { change in } y}{\text { change in } x}=\frac{\text { rise }}{\text { run }}
$$

Note that it does not matter if you start with y_{1} or y_{2}. However, you must start with its corresponding x in the denominator.

- Slope-intercept form: The slope-intercept form of an equation with slope m and y-intercept b is given by

$$
y=m x+b
$$

- Point-slope formula: The equation of the line with slope m and passing through $\left(x_{1}, y_{1}\right)$ can be found using

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Common Mistakes to Avoid:

- When identifying the slope and y-intercept using the slope-intercept form, remember to divide each term by the coefficient on y. The slope and y-intercept can only be identified once you have isolated y.
- Remember that the change in y is in the numerator of the slope formula. DO NOT place it in the denominator.

PROBLEMS

1. Identify the slope and the y-intercept of each line.
(a) $3 x-2 y=6$

$$
\begin{aligned}
3 x-2 y & =6 \\
-2 y & =-3 x+6 \\
y & =\frac{3}{2} x-3 \\
m & =\frac{3}{2} \\
y-\text { intercept } & =(0,-3)
\end{aligned}
$$

(b) $5 x+10 y=-3$

$$
\begin{aligned}
5 x+10 y & =-3 \\
10 y & =-5 x-3 \\
y & =-\frac{5}{10} x-\frac{3}{10} \\
y & =-\frac{1}{2} x-\frac{3}{10} \\
m & =-\frac{1}{2} \\
y-\text { intercept } & =\left(0,-\frac{3}{10}\right)
\end{aligned}
$$

2. Find the slope of the line passing through $(-1,3)$ and (5, -2).

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{-2-3}{5-(-1)} \\
& m=-\frac{5}{6} \\
& m=-\frac{5}{6}
\end{aligned}
$$

3. Find the slope of the line passing through $(-9,2)$ and $(-5,5)$.

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{5-2}{-5-(-9)} \\
& m=\frac{3}{4} \\
& m=\frac{3}{4}
\end{aligned}
$$

4. Find the equation of the line with slope $m=-3$ and passes through ($5,-2$).

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-(-2)=-3(x-5) \\
& y+2=-3 x+15 \\
& y=-3 x+13 \\
& y=-3 x+13
\end{aligned}
$$

5. Find the equation of the line with $m=\frac{3}{4}$ and passing through $(-1,2)$.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x-(-1)) \\
y-2 & =\frac{3}{4} x+\frac{3}{4} \\
y & =\frac{3}{4} x+\frac{11}{4} \\
y & =\frac{3}{4} x+\frac{11}{4}
\end{aligned}
$$

6. Find the equation of the line passing through $(-2,3)$ and $(4,-5)$.

NOTE: First, we must find the slope of the line.

$$
\begin{gathered}
m=\frac{-5-3}{4-(-2)}=\frac{-8}{6}=\frac{-4}{3} \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-\frac{4}{3}(x-(-2)) \\
y-3=-\frac{4}{3} x-\frac{8}{3} \\
y=\frac{4}{3}+\frac{1}{3} \\
y=\frac{4}{3} x+\frac{1}{3}
\end{gathered}
$$

7. Find the equation of the line passing through $(-7,2)$ and has a y-intercept at 3.

NOTE: First, we must find the slope of the line. Remember that a y-intercept at 3 translates to the ordered pair $(0,3)$.

$$
\begin{gathered}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-3}{-7-0}=\frac{-1}{-7}=\frac{1}{7} \\
y=m x+b \\
y=\frac{1}{7} x+3 \\
y=\frac{1}{7} x+3
\end{gathered}
$$

8. Find the equation of the line which has an x-intercept at -2 and a y-intercept at 4 .

NOTE: This means that the line passes through $(-2,0)$ and $(0,4)$.

$$
\begin{aligned}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =\frac{4-0}{0-(-2)}=\frac{4}{2}=2 \\
y & =m x+b \\
y & =2 x+4 \\
y & =2 x+4
\end{aligned}
$$

\qquad
9. Find the equation of the line passing through $(-7,2)$ and has an x-intercept at 3.

$$
\begin{aligned}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =\frac{2-0}{-7-3}=\frac{2}{-10}=-\frac{1}{5} \\
y-0 & =-\frac{1}{5}(x-3) \\
y & =-\frac{1}{5} x+\frac{3}{5} \\
y & =-\frac{1}{5} x+\frac{3}{5}
\end{aligned}
$$

