Definition:

- Quadratic Equation: is an equation that can be written in the form

$$
a x^{2}+b x+c=0
$$

where a, b, and c are real numbers, $a \neq 0$.

Important Properties:

- Square Root Property: If c is a positive number and if $x^{2}=c$, then

$$
x=\sqrt{c} \quad \text { or } \quad x=-\sqrt{c} .
$$

(This can be written as one answer as $\pm \sqrt{c}$.) In other words, when solving a quadratic equation by the square root property, we want both the positive and negative square roots.

Common Mistakes to Avoid:

- Do NOT forget to include the negative square root in the answer.
- Before you apply the square root property make sure the squared term is isolated.
- $\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}$.

PROBLEMS

Use the square root property to solve each equation.

1. $x^{2}=36$

$$
\begin{gathered}
x^{2}=36 \\
\sqrt{x^{2}}=\sqrt{36} \\
x= \pm 6 \\
x=6, \quad x=-6
\end{gathered}
$$

2. $x^{2}=18$

$$
\begin{aligned}
& x^{2}=18 \\
& \sqrt{x^{2}}=\sqrt{18} \\
& x= \pm \sqrt{9} \sqrt{2} \\
& x= \pm 3 \sqrt{2} \\
& x=3 \sqrt{2}, \quad x=-3 \sqrt{2}
\end{aligned}
$$

3. $5 x^{2}-125=0$

$$
\begin{aligned}
5 x^{2}-125 & =0 \\
5 x^{2} & =125 \\
x^{2} & =25 \\
\sqrt{x^{2}} & =\sqrt{25} \\
x & = \pm 5 \\
x=5, \quad x & =-5
\end{aligned}
$$

4. $6 x^{2}-240=0$

$$
\begin{aligned}
6 x^{2}-240 & =0 \\
6 x^{2} & =240 \\
x^{2} & =40 \\
\sqrt{x^{2}} & =\sqrt{40} \\
x & = \pm \sqrt{4} \sqrt{10} \\
x & = \pm 2 \sqrt{10} \\
x=2 \sqrt{10}, & x=-2 \sqrt{10}
\end{aligned}
$$

5. $(x-3)^{2}=12$

$$
\begin{aligned}
(x-3)^{2} & =12 \\
\sqrt{(x-3)^{2}} & =\sqrt{12} \\
x-3 & = \pm \sqrt{4} \sqrt{3} \\
x-3 & = \pm 2 \sqrt{3} \\
x & =3 \pm 2 \sqrt{3} \\
x=3+2 \sqrt{3}, & x=3-2 \sqrt{3}
\end{aligned}
$$

6. $(x+4)^{2}-3=17$

$$
\begin{aligned}
(x+4)^{2}-3 & =17 \\
(x+4)^{2} & =20 \\
\sqrt{(x+4)^{2}} & =\sqrt{20} \\
x+4 & = \pm \sqrt{4} \sqrt{5} \\
x+4 & = \pm 2 \sqrt{5} \\
x & =-4 \pm 2 \sqrt{5}
\end{aligned}
$$

$$
x=-4+2 \sqrt{5}, \quad x=-4-2 \sqrt{5}
$$

7. $(3 x+1)^{2}=15$

$$
\begin{aligned}
(3 x+1)^{2} & =15 \\
\sqrt{(3 x+1)^{2}} & =\sqrt{15} \\
3 x+1 & = \pm \sqrt{15} \\
3 x & =-1 \pm \sqrt{15} \\
x & =\frac{-1 \pm \sqrt{15}}{3}
\end{aligned}
$$

$$
x=\frac{-1+\sqrt{15}}{3}, \quad x=\frac{-1-\sqrt{15}}{3}
$$

8. $(2 x-5)^{2}=24$

$$
\begin{aligned}
&(2 x-5)^{2}=24 \\
& \sqrt{(2 x-5)^{2}}=\sqrt{24} \\
& 2 x-5= \pm \sqrt{4} \sqrt{6} \\
& 2 x-5= \pm 2 \sqrt{6} \\
& 2 x=5 \pm 2 \sqrt{6} \\
& x=\frac{5 \pm 2 \sqrt{6}}{2} \\
& x=\frac{5+2 \sqrt{6}}{2}, \quad x=\frac{5-2 \sqrt{6}}{2}
\end{aligned}
$$

9. $(7 x-5)^{2}-75=0$

$$
\begin{aligned}
(7 x-5)^{2}-75 & =0 \\
(7 x-5)^{2} & =75 \\
\sqrt{(7 x-5)^{2}} & =\sqrt{75} \\
7 x-5 & = \pm \sqrt{25} \sqrt{3} \\
7 x-5 & = \pm 5 \sqrt{3} \\
7 x & =5 \pm 5 \sqrt{3} \\
x & =\frac{5 \pm 5 \sqrt{3}}{7}
\end{aligned}
$$

$$
x=\frac{5+5 \sqrt{3}}{7}, \quad x=\frac{5-5 \sqrt{3}}{7}
$$

