Definitions:

- System of linear equations: consists of two or more linear equations with the same variables.
- Consistent: The system is consistent if there is exactly one solution.
- Inconsistent: The system is inconsistent if there is no solution. This happens when the two equations represent parallel lines.
- Dependent: The system is dependent if there is an infinite number of ordered pairs as solutions. This occurs when the two equations represent the same line.

Steps for the Substitution Method:

1. Choose one of the equations and solve for one variable in terms of the other variable.
2. Substitute the expression from Step 1 into the other equation.
3. Solve the equation from Step 2. (There will be one equation with one variable).
4. Substitute the solution from Step 3 into either of the original equations. This will give the value of the other variable.

Important Properties:

- The Substitution Method is useful when one equation can be solved very quickly for one of the variables.
- If the equation in Step 3 above is a false statement (such as $7=2$), then the system is inconsistent.
- If the equation in Step 3 above is a true statement (such as $0=0$), then the system is dependent.

Common Mistakes to Avoid:

- Remember that a system of linear equations is not completely solved until values for both x and y are found. To avoid this mistake, write all answers as an ordered pair.
- Remember that all ordered pairs are stated with the x-variable first and the y-variable second; namely, (x, y).
- If the first equation is used to solve for the variable, substitute it into the second equation. Otherwise, this will incorrectly lead to the statement $0=0$.

PROBLEMS

1. Solve

$$
\begin{aligned}
2 x+y & =5 \\
3 x+2 y & =-8
\end{aligned}
$$

Notice that the first equation can be solved easily for y, giving us

$$
\begin{aligned}
2 x+y & =5 \\
y & =-2 x+5
\end{aligned}
$$

This is what we will now substitute into the y variable in our second equation. This gives us:

$$
\begin{aligned}
3 x+2(-2 x+5) & =-8 \\
3 x-4 x+10 & =-8 \\
-x+10 & =-8 \\
-x & =-18 \\
x & =18
\end{aligned}
$$

Next, we need to find the value of our y variable by substituting $x=18$ into one of the equations. Since we already know that $y=-2 x+5$, substituting in this equation gives us:

$$
\begin{aligned}
& y=-2(18)+5 \\
& y=-36+5 \\
& y=-31
\end{aligned}
$$

2. Solve

$$
\begin{aligned}
& 4 x+3 y=10 \\
& 2 x+y=4
\end{aligned}
$$

Notice that we can quickly solve for y using the second equation.

$$
\begin{aligned}
2 x+y & =4 \\
y & =-2 x+4
\end{aligned}
$$

We will now substitute this into the y variable in our first equation.

$$
\begin{aligned}
4 x+3(-2 x+4) & =10 \\
4 x-6 x+12 & =10 \\
-2 x+12 & =10 \\
-2 x & =-2 \\
x & =1
\end{aligned}
$$

We now need to find the value of y by substituting $x=1$ into one of our equations. Since we already have that $y=-2 x+4$, substituting into this equation gives

$$
\begin{aligned}
& y=-2(1)+4 \\
& y=-2+4 \\
& y=2
\end{aligned}
$$

Answer: $(1,2)$
3. Solve

$$
\begin{aligned}
x-y & =-3 \\
4 x+3 y & =-5
\end{aligned}
$$

Notice that the first equation can be solved quickly for either x or y. We will solve for x.

$$
\begin{aligned}
x-y & =-3 \\
x & =y-3
\end{aligned}
$$

We now substitute this into the x variable in our second equation.

$$
\begin{aligned}
4(y-3)+3 y & =-5 \\
4 y-12+3 y & =-5 \\
7 y-12 & =-5 \\
7 y & =7 \\
y & =1
\end{aligned}
$$

We now substitute $y=1$ into one of our equations in order to find the value of x. Since we already know that $x=y-3$, substituting $y=1$ into this equation yields

$$
\begin{aligned}
& x=1-3 \\
& x=-2
\end{aligned}
$$

4. Solve

$$
\begin{array}{r}
2 x-y=3 \\
-6 x+3 y=9
\end{array}
$$

Notice that the first equation can be solved quickly for y.

$$
\begin{aligned}
2 x-y & =3 \\
-y & =-2 x+3 \\
y & =2 x-3
\end{aligned}
$$

We now substitute this into the y variable in our second equation.

$$
\begin{array}{r}
-6 x+3(2 x-3)=9 \\
-6 x+6 x-9=9 \\
-9=9
\end{array}
$$

Since this is a false statement, the system is inconsistent. Therefore, there is no solution.
Answer: No Solution
5. Solve

$$
\begin{aligned}
2 x+3 y & =5 \\
x-4 y & =6
\end{aligned}
$$

Notice that the second equation can be solved easily for x.

$$
\begin{aligned}
x-4 y & =6 \\
x & =4 y+6
\end{aligned}
$$

We will now substitute this into the x variable in our first equation.

$$
\begin{aligned}
2(4 y+6)+3 y & =5 \\
8 y+12+3 y & =5 \\
11 y+12 & =5 \\
11 y & =-7 \\
y & =-\frac{7}{11}
\end{aligned}
$$

Finally, we need to solve for the x variable by substituting $y=-\frac{7}{11}$ into one of our equations. Since we already know that $x=4 y+6$ substituting into this equation yields

$$
\begin{aligned}
& x=4\left(-\frac{7}{11}\right)+6 \\
& x=-\frac{28}{11}+6 \\
& x=-\frac{28}{11}+\frac{66}{11} \\
& x=\frac{38}{11}
\end{aligned}
$$

Answer: $\left(\frac{38}{11},-\frac{7}{11}\right)$
6. Solve

$$
\begin{aligned}
& 4 x+y=10 \\
& 3 x+2 y=5
\end{aligned}
$$

Notice that the first equation can be easily solve for y.

$$
\begin{aligned}
4 x+y & =10 \\
y & =-4 x+10
\end{aligned}
$$

We then substitute this into the y variable in the second equation.

$$
\begin{aligned}
3 x+2(-4 x+10) & =5 \\
3 x-8 x+20 & =5 \\
-5 x+20 & =5 \\
-5 x & =-25 \\
x & =-5
\end{aligned}
$$

Finally, we need to find the value of y by substituting $x=-5$ into one of our equations. Since we already know that $y=-4 x+10$, substituting into this equation gives us

$$
\begin{aligned}
& y=-4(-5)+10 \\
& y=20+10 \\
& y=30
\end{aligned}
$$

[^0]
[^0]: Answer: $(-5,30)$

