A function \(f \) is a rule that assigns to every element \(x \) contained in a set \(A \), \textit{exactly one} element \(y \) in a set \(B \). Another way to think of a function is the phrase “for every \(x \), there is only one \(y \).”

The symbol \(f(x) \), read “\(f \) of \(x \),” is called the \textbf{value of the function at} \(x \) and is usually equated with the variable \(y \). In other words, we write \(y = f(x) \).

The set \(A \) is called the \textbf{domain} of the function. The domain of a function is the set of all values of \(x \) for which the function is defined. If \(x \) is any element in the domain, then \(x \) is called the \textbf{independent variable}. The domain can also be thought of as the set of all input values.

The \textbf{range} of the function is the set of all possible values of \(f(x) \), as \(x \) varies throughout the domain. Hence, the range of a function is the set of all \(y \) values assumed by the function. If \(y \) represents an output of the function \(f \) from an input \(x \), then \(y \) is called the \textbf{dependent variable}.

A function may be defined by a set of ordered pairs, a table, an arrow diagram, a graph, or an equation. Because functions play an important role in mathematics, it is important to recognize when a particular relationship represents a function.

Example 1: Determine which of the following are examples of functions. For each function, determine the domain and range.

(a) \(\{(1, 2), (3, 6), (6, 8), (9, 2), (12, 5)\} \)

(b) \[
\begin{array}{c|cccc}
 x & 1 & 2 & -5 & 2 \\
 y & -1 & 4 & 6 & 7 \\
\end{array}
\]

(c) \[
\begin{array}{c}
1 \\
5 \\
2 \\
3 \\
3 \\
\end{array} \rightarrow \begin{array}{c}
1 \\
4 \\
9 \\
\end{array}
\]

(d) \[
\begin{array}{c}
1 \\
2 \\
3 \\
\end{array} \rightarrow \begin{array}{c}
1 \\
4 \\
9 \\
\end{array}
\]

(e) \(x + y^2 = 9 \) where \(x \) is the input.
• The **graph of a function** is a set of points \((x, y)\) in the \(xy\)-plane such that \(y = f(x)\).

• **The Vertical Line Test:** A set of points in the \(xy\)-plane is the graph of a function if and only if no vertical line intersects the set of points more than once.

Example 2: Determine if each of following curves is the graph of a function.

![Graphs](image)

• In our definition of a function \(y = f(x)\), the independent variable \(x\) serves as a placeholder for all input values. Therefore, to evaluate a function at a number, we substitute the number for the placeholder.

Example 3: Consider the function \(f(x) = 3x^2 - 2x - 8\). Find

(a) \(f(0)\)

(b) \(f(-1)\)

(c) \(f(2)\)

(d) \(f\left(\frac{1}{2}\right)\)