MATH 10771: Exam #2 (Fall 2016)

- 1. Use order of operations to calculate the following. Show all work.
 - (a) $8 \div 4 + 24 \div 3 \times 4 + 3 \cdot (11 3^2)$
 - (b) $4 \times (9+2) 16 \div 2 + (8-3) \times 6$
- 2. Determine the next eight numerals after 11100_{two} .
- 3. Identify the property being used.
 - (a) $(5 \cdot 6) \cdot 3 = 3 \cdot (5 \cdot 6)$ (c) $9 \cdot 1 = 9$
 - (b) $3(7+2) = 3 \cdot 7 + 3 \cdot 2$ (d) 7 + (6+2) = (7+6) + 2
- 4. Convert each base ten numeral into its numeral in the base requested.
 - (a) 825 into base six
 - (b) 3429 into base eight
- 5. Convert each of the following numerals into its base ten numeral.
 - (a) 2564_{seven}
 - (b) $19B2_{\text{sixteen}}$
- 6. Explain why $0 \div 0$ is undefined. Be specific.
- 7. Explain why 0^0 is undefined. Be specific.

- 8. Using the properties of exponents, determine which is larger. STATE WHY!!! (Note answers without reasons will reason no credit).
 - (a) 81^8 OR $3^{30} + 3^{30} + 3^{30} + 3^{30}$ (b) 16^{19} or 8^{25}
- 9. Find x: $5^5 \cdot 125^3 = 25^x$

10. Rewrite the following using a single exponent.

- (a) $12^4 \cdot 18^3 \cdot 9^6 \cdot 16^5 \cdot 27^3$
- (b) $64^3 \cdot 8^3 \div 32^2 \cdot 4^6$
- 11. Find 41×58 using the Russian Peasant Algorithm.
- 12. Find 56×47 using the Intermediate Algorithm (Partial Products).
- 13. Add the following numbers using the scratch algorithm. You MUST show all work.

$$953725359427361+768$$

14. Compute the following:

a) $9.5DB_{sixteen}$	b) $6 3 4 2_{\text{eight}}$
$+ A 7 3 C_{sixteen}$	-3765_{eight}

15. Complete the following multiplication chart in base six.

×	0	1	2	3	4	5	
0	0	0	0	0	0	0	
1	0	1	2	3	4	5	
2	0	2					
3	0	3					
4	0	4					
5	0	5					

16. Short Answer.

- (a) For any nonzero whole number $a, 0 \div a =$ _____.
- (b) If $a \neq 0$, then $a^0 =$ _____.
- (c) For any nonzero whole number $a, a \div 0 =$ _____.
- (d) For the set of whole numbers, the additive identity is ______ and the multiplicative identity is _____.
- (e) In the multiplication problem $3 \cdot 7 = 21$, the numbers 3 and 7 are called ______ and 21 is called the ______.
- (f) In the addition problem 8 + 2 = 10, the number 8 and 2 are called _____ and 10 is called the _____.
- (g) State a property that whole number addition has that whole number subtraction does not. Illustrate that whole number subtraction does not have this property.
- (h) Determine if the set $\{0, 1, 5\}$ is closed under multiplication. If not, tell why.
- (i) Determine if the set {1, 3, 5, 7, 9, ...} is closed under addition. If not, tell why.
- 17. Given below is the multiplication chart in base nine. Using the chart provided, find the following.

×	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8
2	0	2	4	6	8	11	13	15	17
3	0	3	6	10	13	16	20	23	26
4	0	4	8	13	17	22	26	31	35
5	0	5	11	16	22	27	33	38	44
6	0	6	13	20	26	33	40	46	53
$\overline{7}$	0	7	15	23	31	38	46	54	62
8	0	8	17	26	35	44	53	62	71

(a) $254_{\text{nine}} \times 73_{\text{nine}}$

(b) $564765_{\text{nine}} \div 7_{\text{nine}}$

ANSWERS

1.	(a) 4	0	((b) 66						
2.	11101;	11110;	11111	100000;	100001;	100010;	100011;	100100		
3.	(a) commutative prop of multiplication(b) distributive prop					(c) identity prop(d) associative prop of addition				
4.	(a) 3	453_{six}	((b) 6545_{eight}						
5.	(a) 9	77	((b) 6578						
6.	3. Show using the missing factor approach that there are an infinite number of solutions.									
7.	. Show using the pattern approach									
8.	3. (a) 81^8 is larger since $9 \cdot 3^{30} > 4 \cdot 3^{30}$ (b) 16^{19} is larger since $2^{76} > 2^{75}$									
9.	x = 7									
10.	(a) 6^{31} (b) 2^{29}									
11.	1. 2378 – Remember the russian peasant algorithm requires you to halve one column and double another.									
12.	. 2632 – remember to show all steps and all partial products.									
13.	3593 -	remembe	er to inc	lude all sc	ratches in	the correc	t locations	S.		
14.	14. (a) $13D17_{sixteen}$ (b) 2355_{eight}									
	X	0	1	2 3	4	5				
	0	0	0	0 0	0	0				
15	1	0	1	2 3	4	5				
19.	2	0	2	4 1	0 12	14				
	3	0	3	10 1	3 20	23				
	4		4	12 2	0 24	32				
	5	0	5	14 2	3 32	41				
16.	(a) 0									

(b) 1

(c) undefined

(d) 0; 1

- (e) factors; product
- (f) addends; sum
- (g) Many different answers: closure property, commutative prop; no identity prop
- (h) Not closed under multiplication since $5\cdot 5=25\notin\{0,\ 1,\ 5\}$
- (i) Not closed under addition since $1 + 3 = 4 \notin \{1, 3, 5, 7, \ldots\}$

17. (a) 21083_{nine}

(b) 73234_{nine} with a remainder of 4