MATH 10771: Exam \#3 (Fall 2016)

1. Use divisibility tests to determine if

$$
8734265436
$$

is divisible by

$$
2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 8, \quad 9, \quad 10, \quad 12
$$

DO NOT USE A CALCULATOR. State why or why not for each number.
2. Simplify each expression. Exact answers only.
(a) $(-4)^{4}=$
(b) $(-3)^{-4}=$
(c) $-7^{2}=$
(d) $-8^{-3}=$
3. Devise a divisibility test for 24 . Be specific and state the divisibility test completely.
4. Find all integers $n,-30 \leq n \leq 30$, which make the following congruences true.
(a) $19 \equiv-29(\bmod n)$
(b) $15 \equiv n(\bmod 6)$
5. Determine the remainder when 3^{127} is divided by 5 . You must show all work. Answers without work will receive no credit.
6. Illustrate $(-3) \times(-5)$ using the charge field method. Explain your example.
7. If $b=2^{2} \cdot 3^{5} \cdot 5 \cdot 7^{3} \cdot 11 \cdot 13^{2} \cdot 17$ and $\operatorname{GCF}(a, b)=2^{2} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2}$ and $\operatorname{LCM}(a, b)=2^{3} \cdot 3^{5} \cdot 5^{3} \cdot 7^{3} \cdot 11^{2} \cdot 13^{4} \cdot 17 \quad$ find a.
8. How many factors does $n=2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13^{4}$ have?
9. If a is negative, b is negative, and c is positive, determine whether each of the following is positive, negative, or cannot be determined.
(a) $a c-(a+b)$
(c) $\quad(2 a+3 b)(4 c)-b^{2}$
(b) $\quad-a(b-c)(a-c)$
(d) $b c-a^{2}-a c$
10. CHOOSE ONE!!! Use divisibility tests to determine whether

$$
36074973543946821
$$

is divisible by 7 or divisible by 11 . State why or why not. Show all work.
11. Calculate the following in the indicated clock.
(a) $8 \otimes 6(11$ clock $)$
(c) $3 \div 5$ (7 clock)
(b) $7 \ominus 26 \quad(30$ clock $)$
(d) $13 \oplus 18 \quad(20$ clock $)$
12. find the $\mathbf{L C M}(72,120,378)$.
13. Find the prime factorization for 79380 .
14. Find the $\mathbf{L C M}(67914,79380)$. (Note: 79380 is from the previous problem.)
15. Find the $\mathbf{G C F}(1421,1827,2523)$.
16. Short answer.
(a) Illustrate $3+(-6)$ using the measurement model.
(b) In a 20-clock, what is the additive identity?
(c) In an 9-clock, find the reciprocal of 2 .
(d) Name a property that integer subtraction has that whole number subtraction did not.
(e) A counting number with more than two factors is called $\mathrm{a}(\mathrm{n})$ \qquad .
(f) In a 26 -clock, find the additive inverse of 17 .
(g) To determine if 467 is prime, we must check to see if it is divisible by any numbers other than 1 and itself. According to the Prime Factor Test, list all of the numbers that must be checked as possible factors to see if 817 is prime.
(h) Name a property that integer addition has that whole number addition did not.

ANSWERS

1. Let $n=8734265436$
$2 \mid n$ since n ends in even number
$3 \mid n$ since $3 \mid 48$ (48 is sum of digits)
$4 \mid n$ since $4 \mid 36$
5 does not divide n since n does not end in 0 or 5
$6 \mid n$ since $2 \mid n$ and $3 \mid n$
8 does not divide n since 8 does not divide 436
9 does not divide n since 9 does not divide 48 (the sum of the digits)
10 does not divide n since n does not end in 0
$12 \mid n$ since $3 \mid n$ and $4 \mid n$
2. (a) 256
(b) $\frac{1}{81}$
(c) -49
(d) $-\frac{1}{512}$
3. $24 \mid n$ if and only if $3 \mid n$ and $8 \mid n$.
4. (a) $n \in\{2,3,4,6,8,12,16,24\}$
(b) $\{-27,-21,-15,-9,-3,3,9,15,21,27\}$
5. 2
6. Illustrate by removing 3 groups of five negatives.
7. $a=2^{3} \cdot 3^{2} \cdot 5^{3} \cdot 11^{2} \cdot 13^{4}$
8. 1080 factors
9. (a) cannot be deter-
(b) positive
(c) negative
(d) cannot be determined
10. yes, the number is divisible by 11 .
11. (a) 4
(b) 11
(c) 2
(d) 11
12. 7560
13. $2^{2} \cdot 3^{4} \cdot 5 \cdot 7^{2}$
14. $2^{2} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 11$
15. 29
16. (a) on a number line move 3 spaces to the right and then move six spaces to the left.
(b) 20 or 0
(c) 5
(d) closure property
(e) composite
(f) $2,3,5,7,11,13,17,19$
(g) additive inverse property
