Section 6.1: Fractions

• Fraction: A fraction is a number that can be represented by an ordered pair of whole numbers *a* and *b* as

$$\frac{a}{b}$$
 or a/b where $b \neq 0$.

- **Proper Fraction:** A proper fraction is a fraction where the numerator is smaller in value than the denominator. A proper fraction always represents a quantity less than 1.
- **Improper Fraction:** An improper fraction is a fraction where the numerator is larger in value than the denominator.
- Mixed Number: A mixed numeral is a number of the form $a\frac{b}{c}$ where a, b, and c are nonzero whole numbers, and b < c.

CAUTION: $a\frac{b}{c}$ means $a + \frac{b}{c}$ but the + symbol is not written. a is the whole number part and $\frac{b}{c}$ is the fraction part of the mixed number.

Example 1: Convert $3\frac{2}{5}$ to an improper fraction.

Example 2: Convert $\frac{28}{3}$ to mixed number.

• Fundamental Law of Fractions: The Fundamental Law of Fractions states that the value of a fraction does not change when its numerator and denominator are both multiplied by the same non-zero number. Thus, Let $\frac{a}{b}$ be any fraction and n a nonzero whole number. Then

$$\frac{a}{b} = \frac{an}{bn} = \frac{na}{nb}$$

NOTES:

- 1. The fractions $\frac{a}{b}$ and $\frac{an}{bn}$ are called **equivalent fractions**.
- 2. When $\frac{an}{bn}$ is replaced with $\frac{a}{b}$ where $n \neq 1$ we say $\frac{an}{bn}$ has been **simplified**. A fraction is written in **simplest form** (or **lowest terms**) when its numerator and denominator have no common factors.
- 3. The Fundamental Law of Fractions can be used to add or subtract any two fractions.
- Fraction Equality: Let $\frac{a}{b}$ and $\frac{c}{d}$ be any fractions. Then

$$\frac{a}{b} = \frac{c}{d}$$
 if and only if $ad = bc$.

• Less than for fractions: Let $\frac{a}{c}$ and $\frac{b}{c}$ be any fractions. Then

$$\frac{a}{c} < \frac{b}{c}$$
 if and only if $a < b$.

• Cross Multiplication of Fraction Inequality: Let $\frac{a}{b}$ and $\frac{c}{d}$ be any fractions. Then

$$\frac{a}{b} < \frac{c}{d}$$
 if and only if $ad < bc$.

Example 3: Rewrite each of the following in simplest form.

(a) $\frac{189}{153}$

(c) $\frac{480}{672}$

(d) $\frac{3335}{230}$

Example 4: Arrange the following fractions from smallest to largest: $\frac{4}{7}$, $\frac{7}{13}$, $\frac{14}{25}$

Example 5: Arrange the following fractions from smallest to largest: $\frac{5}{8}$, $\frac{6}{7}$, $\frac{3}{10}$

Example 6: Use pattern blocks to solve the following problems.

- (a) The trapezoid is what fractional part of the hexagon?
- (b) The blue rhombus is what fractional part of the hexagon?
- (c) The triangle is what fractional part of the hexagon?
- (d) The triangle is what fractional part of the blue rhombus?
- (e) The triangle is what fractional part of the trapezoid?

Example 7: Use two trapezoids and one blue rhombus to construct a shape similar to the one shown below.

- (a) Given that the shape = 1, what pattern block(s) would you use to represent each of the following fractions?
 - (i) $\frac{1}{4}$ (ii) $\frac{1}{2}$ (iii) $\frac{1}{8}$
- (b) Given that the shape = 1, what fraction is represented by the yellow hexagon?