Section 8.2: Multiplication and Division of Integers

MULTIPLICATION:

- Number line: Recall that the multiplication of whole numbers can be viewed as repeated addition.
- Pattern:
- Charge Field: $a \times b$

1. Begin with a set of zero.
2. If $a>0$, then we add a groups of b to our set.
3. If $a<0$, then we take away $|a|$ groups of b from our set.

Example 1: Illustrate 3×-4 using the charge field method.

Example 2: Illustrate -5×-2 using the charge field method.

INTEGER MULTIPLICATION FACTS:

- $a \times 0=0=0 \times a$
- positive \times negative $=$ negative
- positive \times positive $=$ positive
- negative \times negative $=$ positive

Properties of Integer Multiplication

- Closure Property: integer \times integer $=$ integer.
- Commutative Property: If a and b are integers, then $a \cdot b=b \cdot a$.
- Associative Property: If a, b, and c are integers, then $a \cdot(b \cdot c)=(a \cdot b) \cdot c$.
- Identity Property: One is the unique number such that $a \cdot 1=a=1 \cdot a$ for all integers a. We say that 1 is the multiplicative identity.
- Distributive Property: If a, b, and c are integers, then $a(b+c)=a b+a c$ and $\overline{a(b-c)}=a b-a c$.
- Multiplication Cancellation Property: Suppose $c \neq 0$. If $a c=b c$ then $a=b$.
- Zero Divisors Property: $a b=0$ if and only if $a=0$ or $b=0$.

DIVISION: Let a and b be integers with $b \neq 0$. Then $a \div b=c$ if and only if $a=b \cdot c$ for a unique integer c. (Recall that this is the missing factor approach).

INTEGER DIVISION FACTS:

- $a \div 1=a$
- positive \div negative $=$ negative
- positive \div positive $=$ positive
- negative \div negative $=$ positive
- negative \div positive $=$ negative
- If $a \neq 0$, then $0 \div a=0$
- $a \div 0=$ undefined
- $0 \div 0=$ undefined

Example 3: Let a be a negative integer, b be a positive integer, and c be a negative integer. Determine if each of the following is positive, negative, or cannot be determined.
(a) $(a-b)(b-c)$
(c) $(a+c)(b+c)$
(b) $4 a-3 b+9 c$
(d) $a+b c$

NEGATIVE EXPONENTS: Let a be any nonzero number and n be a positive integer. Then

$$
a^{-n}=\frac{1}{a^{n}} \quad \text { and } \quad \frac{1}{a^{-n}}=a^{n} .
$$

NOTE: All of the exponent rules learned in Section 3.3 hold for negative exponents.
Example 4: Simplify each of the following.
(a) $(-5)^{2}=$
(b) $-6^{2}=$
(c) $4^{-2}=$
(d) $5^{-3}=$
(e) $(-2)^{-4}=$
(f) $\quad-7^{-2}=$
(g) $\quad(-5)^{3}=$
(h) $\quad-2^{-5}=$

Scientific Notation: Numbers are said to be in scientific notation when expressed in the form $a \times 10^{n}$, where $1 \leq|a|<10$ and n is any integer. The number a is called the mantissa and n the characteristic of $a \times 10^{n}$.

Converting from Standard From to Scientific Notation:

Step 1: Write the number factor a by moving the decimal point so that $|a|$ is greater than or equal to 1 but less than 10 . To do this, place the decimal point to the right of the first non-zero digit.
Step 2: Multiply the number by 10^{n}, where $|n|$ is the number of places that the decimal point moves. If the decimal point moves to the left, then $n>0$ (n is positive). If the decimal point moves to the right, then $n<0$ (n is negative). Remove any zeros lying to the right of the last non-zero digit or to the left of the first non-zero digit.

Example 5: Write each number in scientific notation.
(a) $340,000,000$
(c) -0.0000901200
(b) 0.0000000467
(d) $56,800,000,000,000,000$

Converting from Scientific Notation to Standard Form:

Step 1: Remove the exponential factor 10^{n}.
Step 2: Move the decimal point $|n|$ places, inserting zero placeholders as needed. If $n>0$ (n is positive), move the decimal point to the right. If $n<0$ (n is negative), move the decimal point to the left.

Example 6: Write each number in standard form.
(a) 4.98×10^{-5}
(c) -3.129×10^{9}
(b) 9.4×10^{7}
(d) 1.234×10^{-6}

Example 7: Evaluate each of the following. Express your answers in scientific notation.
(a) $\left(9.62 \times 10^{-12}\right)\left(2.8 \times 10^{9}\right)$
(b) $\frac{3.74 \times 10^{-6}}{8.5 \times 10^{-15}}$
(c) $\frac{\left(1.38 \times 10^{12}\right)\left(4.5 \times 10^{-16}\right)}{1.15 \times 10^{10}}$

