Section 8.2: Multiplication and Division of Integers

MULTIPLICATION:

• **Number line:** Recall that the multiplication of whole numbers can be viewed as repeated addition.

• Pattern:

• Charge Field: $a \times b$

- 1. Begin with a set of zero.
- 2. If a > 0, then we add a groups of b to our set.
- 3. If a < 0, then we take away |a| groups of b from our set.

Example 1: Illustrate 3×-4 using the charge field method.

Example 2: Illustrate -5×-2 using the charge field method.

INTEGER MULTIPLICATION FACTS:

- $a \times 0 = 0 = 0 \times a$
- positive \times negative = negative
- positive \times positive = positive
- negative \times negative = positive

Properties of Integer Multiplication

- Closure Property: integer \times integer = integer.
- Commutative Property: If a and b are integers, then $a \cdot b = b \cdot a$.
- Associative Property: If a, b, and c are integers, then $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- <u>Identity Property</u>: One is the unique number such that $a \cdot 1 = a = 1 \cdot a$ for all integers \overline{a} . We say that 1 is the multiplicative identity.
- Distributive Property: If a, b, and c are integers, then a(b + c) = ab + ac and $\overline{a(b-c) = ab ac}$.
- Multiplication Cancellation Property: Suppose $c \neq 0$. If ac = bc then a = b.
- Zero Divisors Property: ab = 0 if and only if a = 0 or b = 0.

DIVISION: Let a and b be integers with $b \neq 0$. Then $a \div b = c$ if and only if $a = b \cdot c$ for a unique integer c. (Recall that this is the missing factor approach).

INTEGER DIVISION FACTS:

- $\bullet \ a \div 1 = a$
- positive \div negative = negative
- positive \div positive = positive
- negative \div negative = positive

- negative \div positive = negative
- If $a \neq 0$, then $0 \div a = 0$
- $a \div 0 =$ undefined
- $0 \div 0 =$ undefined

Example 3: Let a be a negative integer, b be a positive integer, and c be a negative integer. Determine if each of the following is positive, negative, or cannot be determined.

- (a) (a-b)(b-c) (c) (a+c)(b+c)
- (b) 4a 3b + 9c (d) a + bc

NEGATIVE EXPONENTS: Let a be any nonzero number and n be a positive integer. Then

$$a^{-n} = \frac{1}{a^n}$$
 and $\frac{1}{a^{-n}} = a^n$.

NOTE: All of the exponent rules learned in Section 3.3 hold for negative exponents.

Example 4: Simplify each of the following.

- (a) $(-5)^2 =$
- (b) $-6^2 =$
- (c) $4^{-2} =$
- (d) $5^{-3} =$
- (e) $(-2)^{-4} =$
- (f) $-7^{-2} =$
- (g) $(-5)^3 =$
- (h) $-2^{-5} =$

Scientific Notation: Numbers are said to be in scientific notation when expressed in the form $a \times 10^n$, where $1 \le |a| < 10$ and n is any integer. The number a is called the **mantissa** and n the characteristic of $a \times 10^n$.

Converting from Standard From to Scientific Notation:

- Step 1: Write the number factor a by moving the decimal point so that |a| is greater than or equal to 1 but less than 10. To do this, place the decimal point to the right of the first non-zero digit.
- Step 2: Multiply the number by 10^n , where |n| is the number of places that the decimal point moves. If the decimal point moves to the left, then n > 0 (*n* is positive). If the decimal point moves to the right, then n < 0 (*n* is negative). Remove any zeros lying to the right of the last non-zero digit or to the left of the first non-zero digit.

Example 5: Write each number in scientific notation.

(a)
$$340,000,000$$
 (c) -0.0000901200

(b) 0.000000467

(d) 56,800,000,000,000,000

Converting from Scientific Notation to Standard Form:

- Step 1: Remove the exponential factor 10^n .
- Step 2: Move the decimal point |n| places, inserting zero placeholders as needed. If n > 0 (*n* is positive), move the decimal point to the right. If n < 0 (*n* is negative), move the decimal point to the left.

Example 6: Write each number in standard form.

- (a) 4.98×10^{-5} (c) -3.129×10^{9}
- (b) 9.4×10^7 (d) 1.234×10^{-6}

Example 7: Evaluate each of the following. Express your answers in scientific notation.

(a) $(9.62 \times 10^{-12}) (2.8 \times 10^9)$

(b)
$$\frac{3.74 \times 10^{-6}}{8.5 \times 10^{-15}}$$

(c)
$$\frac{(1.38 \times 10^{12}) (4.5 \times 10^{-16})}{1.15 \times 10^{10}}$$