Section 9.1: Rational Numbers

• Rational numbers: are of the form $\frac{a}{b}$ where a and b are both integers and $b \neq 0$.

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a \text{ and } b \text{ are integers}, b \neq 0 \right\}.$$

NOTE: Every integer, whole number, and fraction is a rational number.

• Let $\frac{a}{b}$ be any rational number and n be a nonzero integer. Then

$$\frac{a}{b} = \frac{na}{nb} = \frac{an}{bn}.$$

• Let $\frac{a}{b}$ be any rational number. Then

$$-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}$$

- $\frac{a}{b}$ is a positive rational number when either a and b are both positive or when a and b are both negative.
- $\frac{a}{b}$ is a negative rational number when a and b have different signs (one negative and one positive).

Properties of Rational Number Addition

- Closure Property: Rational number + Rational number = Rational number.
- Commutative Property: $\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b}$.
- Associative Property: $\frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right) = \left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f}$.
- Identity Property: $\frac{a}{b} + 0 = \frac{a}{b} = 0 + \frac{a}{b}$.
- Additive Inverse Property: For every rational number $\frac{a}{b}$, there exists a unique rational number $-\frac{a}{b}$ such that

$$\frac{a}{b} + -\frac{a}{b} = 0 = -\frac{a}{b} + \frac{a}{b}.$$

 $-\frac{a}{b}$ is called the **additive inverse**.

Properties of Rational Number Multiplication

- Closure Property: Rational number · Rational number = Rational number.
- Commutative Property: $\frac{a}{b} \cdot \frac{c}{d} = \frac{c}{d} \cdot \frac{a}{b}$.
- Associative Property: $\frac{a}{b} \cdot \left(\frac{c}{d} \cdot \frac{e}{f}\right) = \left(\frac{a}{b} \cdot \frac{c}{d}\right) \cdot \frac{e}{f}$.
- Identity Property: $\frac{a}{b} \cdot 1 = \frac{a}{b} = 1 \cdot \frac{a}{b}$.
- Multiplicative Inverse Property: For every nonzero rational number $\frac{a}{b}$, there exists a unique rational number $\frac{b}{a}$ such that

$$\frac{a}{b} \cdot \frac{b}{a} = 1 = \frac{b}{a} \cdot \frac{a}{b}.$$

 $\frac{b}{a}$ is called the **multiplicative inverse** or **reciprocal**.

• Distributive Property:

$$\frac{a}{b}\left(\frac{c}{d} + \frac{e}{f}\right) = \frac{a}{b} \cdot \frac{c}{d} + \frac{a}{b} \cdot \frac{e}{f}$$

Multiplication of Rational Numbers: Let $\frac{a}{b}$ and $\frac{c}{d}$ be any rational numbers. Then

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

Cross Multiplication of Rational Number Inequality: Let $\frac{a}{b}$ and $\frac{c}{d}$ be rational numbers with b > 0 and d > 0. Then

$$\frac{a}{b} < \frac{c}{d}$$
 if and only if $ad < bc$.

NOTE: BE CAREFUL!!! Both denominators must be positive in order to use this. DO NOT use if one of the denominators is negative unless you first the rational number using $\frac{a}{-b} = \frac{-a}{b}$.

Example 1: Put the appropriate sign (<, =, >) between each pair of rational numbers to make a true statement.

(a)	$-\frac{1}{3}$	$\frac{5}{4}$	(c)	$\frac{-12}{15}$	$\frac{36}{-45}$
(b)	$\frac{-5}{6}$	$\frac{-11}{12}$	(d)	$-\frac{3}{12}$	$\frac{4}{-20}$

Example	2 :	Consider	the	fol	lowing	sets:
---------	------------	----------	-----	-----	--------	-------

W	= the set of whole numbers
F	= the set of nonnegative fractions
Ι	= the set of integers
N	= the set of negative integers
Q	= the set of rational numbers

List all the sets that have the following properties.

- (a) The set is closed under addition.
- (b) The set is closed under subtraction.
- (c) The set has the additive inverse property.

Division of Rational Numbers: Let $\frac{a}{b}$ and $\frac{c}{d}$ be any rational numbers where $\frac{c}{d}$ is nonzero. Then $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}.$

NOTE: All the operations that we performed with fractions can be extended to rational numbers.