Section 9.2: Real Numbers

- Irrational Numbers: Set of numbers which have an infinite non-repeating decimal approximation. An irrational number cannot be written as a fraction.
- Real Numbers: are the union of rational and irrational numbers.
- Square root: Let a be a nonnegative real number. Then the square root of a (principal square root), denoted \sqrt{a} , is defined as

$$\sqrt{a} = b$$
 where $b^2 = a$, and $b \ge 0$.

Example 1: Simplify the following square roots.

(a)
$$\sqrt{16}$$
 (c) $\sqrt{49}$

- (b) $\sqrt{169}$ (d) $\sqrt{81}$
- **n-th roots**: Let *a* be a real number and *n* be a positive integer. For $\sqrt[n]{a}$, *a* is called the **radicand** and *n* is called the **index**.
 - 1. If $a \ge 0$, then $\sqrt[n]{a} = b$ if and only if $b^n = a$ and $b \ge 0$.
 - 2. If a < 0 and n is odd, then $\sqrt[n]{a} = b$ if and only if $b^n = a$.
 - 3. If a < 0 and n is even, then $\sqrt[n]{a}$ is undefined.

Example 2: Simplify the following *n*-roots, if possible.

- (a) $\sqrt[4]{16}$ (d) $\sqrt[5]{32}$
- (b) $\sqrt[3]{-27}$ (e) $\sqrt[4]{81}$
- (c) $\sqrt[3]{125}$ (f) $\sqrt[4]{-81}$

Rules for *n*-th roots:

• Product rule for radicals: If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and n is a positive integer,

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}.$$

In other words, the product of radicals is the radical of the product.

• Quotient rule for radicals: If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and n is a positive integer,

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}.$$

In other words, the radical of a quotient is the quotient of the radicals.

- If n is even, then $\sqrt[n]{a^n} = |a|$. For example, $\sqrt[4]{(-2)^4} = |-2| = 2$.
- If n is odd, then $\sqrt[n]{a^n} = a$. For example, $\sqrt[3]{(-6)^3} = -6$.

Simplifying radicals: A radical is in simplest form when the following conditions are satisfied.

- The quantity under the radical has no factor raised to a power greater than or equal to the index.
- There is no fraction under the radical.
- There is no radical in the denominator.
- There is no common factor, other than 1, between the exponents on factors under the radical and the index.

Example 3: Simplify the following radicals.

(a) $\sqrt{44}$	(f) $\sqrt[4]{48}$
(b) $\sqrt{75}$	(g) $3\sqrt{250}$
(c) $-\sqrt{24}$	(h) $-2\sqrt{63}$
(d) $\sqrt{242}$	(i) $7\sqrt[4]{32}$
(e) $\sqrt[3]{-250}$	(j) $5\sqrt[4]{243}$

Example 4: Add or subtract, if possible. Write all answers in simplest form.

(a) $5\sqrt{10} + 8\sqrt{10} - 3\sqrt{10}$

(b) $\sqrt{18} + \sqrt{98}$

(c) $3\sqrt{48} - \sqrt{24}$

(d)
$$5\sqrt{12} - \sqrt{75} + 2\sqrt{20}$$

(e)
$$9\sqrt{7} - 5\sqrt{72} + 4\sqrt{18} - 5\sqrt{112}$$

Example 5: Multiply. Write all answers in simplest form.

(a) $\sqrt{3} \cdot \sqrt{12}$

(b)
$$\sqrt{2}(\sqrt{6}-5)$$

(c) $(\sqrt{2}-4)(\sqrt{2}+5)$

(d)
$$(3+\sqrt{8})(2-\sqrt{2})$$

(e)
$$(\sqrt{3}+5)(\sqrt{3}-4\sqrt{2})$$

Example 6: Divide. Write all answers in simplest form.

(a)
$$\frac{4}{\sqrt{6}}$$

(b)
$$\frac{\sqrt{3}}{\sqrt{5}}$$

(c)
$$\frac{3\sqrt{2}}{5\sqrt{3}}$$

(d)
$$\frac{2\sqrt{3}}{4\sqrt{12}}$$

• Rational exponents and Radicals: Let a be any real number and $\frac{m}{n}$ be a rational number is simplest form. Then

$$a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m.$$

NOTE: In a rational exponent, the numerator indicates the power and the denominator indicates the root.

Example 7: Simplify each expression if possible.

(a) $8^{2/3} =$ (e) $(-125)^{-2/3} =$

(b)
$$16^{3/4} =$$
 (f) $81^{-3/4} =$

(c)
$$27^{1/3} =$$
 (g) $-25^{3/2} =$

(d)
$$(-64)^{2/3} =$$
 (h) $(-16)^{3/4} =$

NOTE: The properties that held for integer exponents also hold for rational exponents.

Solving Inequalities

• Addition Property of Inequality: If a, b, and c are real numbers, then

a < b and a + c < b + c

are equivalent. (That is, you can add or subtract the same quantity on both sides of the inequality without changing the solution.)

• Multiplication Property of Inequality: For all real numbers a, b, and c, with $c \neq 0$,

1. a < b and ac < bc are equivalent if c > 0.

2. a < b and ac > bc are equivalent if c < 0.

(That is, whenever you multiply or divide by a negative number you must reverse or flip the inequality.)

Example 8: Solve the following inequalities

(a)
$$3x + 5 \ge 6x - 7$$
 (c) $x - \frac{2}{3} > \frac{5}{6}$

(b)
$$-2x + 4 \le 11$$
 (d) $\frac{3}{2}x - 3 < \frac{5}{6}x + \frac{1}{3}$