Section 9.2: Real Numbers

- Irrational Numbers: Set of numbers which have an infinite non-repeating decimal approximation. An irrational number cannot be written as a fraction.
- Real Numbers: are the union of rational and irrational numbers.
- Square root: Let a be a nonnegative real number. Then the square root of a (principal square root), denoted \sqrt{a}, is defined as

$$
\sqrt{a}=b \quad \text { where } \quad b^{2}=a, \text { and } b \geq 0 .
$$

Example 1: Simplify the following square roots.
(a) $\sqrt{16}$
(c) $\sqrt{49}$
(b) $\sqrt{169}$
(d) $\sqrt{81}$

- n-th roots: Let a be a real number and n be a positive integer. For $\sqrt[n]{a}, a$ is called the radicand and n is called the index.

1. If $a \geq 0$, then $\sqrt[n]{a}=b$ if and only if $b^{n}=a$ and $b \geq 0$.
2. If $a<0$ and n is odd, then $\sqrt[n]{a}=b$ if and only if $b^{n}=a$.
3. If $a<0$ and n is even, then $\sqrt[n]{a}$ is undefined.

Example 2: Simplify the following n-roots, if possible.
(a) $\sqrt[4]{16}$
(d) $\sqrt[5]{32}$
(b) $\sqrt[3]{-27}$
(e) $\sqrt[4]{81}$
(c) $\sqrt[3]{125}$
(f) $\sqrt[4]{-81}$

Rules for n-th roots:

- Product rule for radicals: If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and n is a positive integer,

$$
\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}
$$

In other words, the product of radicals is the radical of the product.

- Quotient rule for radicals: If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and n is a positive integer,

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
$$

In other words, the radical of a quotient is the quotient of the radicals.

- If n is even, then $\sqrt[n]{a^{n}}=|a|$. For example, $\sqrt[4]{(-2)^{4}}=|-2|=2$.
- If n is odd, then $\sqrt[n]{a^{n}}=a$. For example, $\sqrt[3]{(-6)^{3}}=-6$.

Simplifying radicals: A radical is in simplest form when the following conditions are satisfied.

- The quantity under the radical has no factor raised to a power greater than or equal to the index.
- There is no fraction under the radical.
- There is no radical in the denominator.
- There is no common factor, other than 1 , between the exponents on factors under the radical and the index.

Example 3: Simplify the following radicals.
(a) $\sqrt{44}$
(f) $\sqrt[4]{48}$
(b) $\sqrt{75}$
(g) $3 \sqrt{250}$
(c) $-\sqrt{24}$
(h) $-2 \sqrt{63}$
(d) $\sqrt{242}$
(i) $7 \sqrt[4]{32}$
(e) $\sqrt[3]{-250}$
(j) $5 \sqrt[4]{243}$

Example 4: Add or subtract, if possible. Write all answers in simplest form.
(a) $5 \sqrt{10}+8 \sqrt{10}-3 \sqrt{10}$
(b) $\sqrt{18}+\sqrt{98}$
(c) $3 \sqrt{48}-\sqrt{24}$
(d) $5 \sqrt{12}-\sqrt{75}+2 \sqrt{20}$
(e) $9 \sqrt{7}-5 \sqrt{72}+4 \sqrt{18}-5 \sqrt{112}$

Example 5: Multiply. Write all answers in simplest form.
(a) $\sqrt{3} \cdot \sqrt{12}$
(b) $\sqrt{2}(\sqrt{6}-5)$
(c) $(\sqrt{2}-4)(\sqrt{2}+5)$
(d) $(3+\sqrt{8})(2-\sqrt{2})$
(e) $(\sqrt{3}+5)(\sqrt{3}-4 \sqrt{2})$

Example 6: Divide. Write all answers in simplest form.
(a) $\frac{4}{\sqrt{6}}$
(b) $\frac{\sqrt{3}}{\sqrt{5}}$
(c) $\frac{3 \sqrt{2}}{5 \sqrt{3}}$
(d) $\frac{2 \sqrt{3}}{4 \sqrt{12}}$

- Rational exponents and Radicals: Let a be any real number and $\frac{m}{n}$ be a rational number is simplest form. Then

$$
a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

NOTE: In a rational exponent, the numerator indicates the power and the denominator indicates the root.

Example 7: Simplify each expression if possible.
(a) $8^{2 / 3}=$
(e) $(-125)^{-2 / 3}=$
(b) $16^{3 / 4}=$
(f) $81^{-3 / 4}=$
(c) $27^{1 / 3}=$
(g) $-25^{3 / 2}=$
(d) $(-64)^{2 / 3}=$
(h) $(-16)^{3 / 4}=$

NOTE: The properties that held for integer exponents also hold for rational exponents.

Solving Inequalities

- Addition Property of Inequality: If a, b, and c are real numbers, then

$$
a<b \quad \text { and } \quad a+c<b+c
$$

are equivalent. (That is, you can add or subtract the same quantity on both sides of the inequality without changing the solution.)

- Multiplication Property of Inequality: For all real numbers a, b, and c, with $c \neq 0$,

1. $a<b$ and $a c<b c$ are equivalent if $c>0$.
2. $a<b$ and $a c>b c$ are equivalent if $c<0$.
(That is, whenever you multiply or divide by a negative number you must reverse or flip the inequality.)

Example 8: Solve the following inequalities
(a) $3 x+5 \geq 6 x-7$
(c) $\quad x-\frac{2}{3}>\frac{5}{6}$
(b) $\quad-2 x+4 \leq 11$
(d) $\frac{3}{2} x-3<\frac{5}{6} x+\frac{1}{3}$

