Section 3.2: Whole Numbers Multiplication & Division

MULTIPLICATION: factor \cdot factor = product

• Repeated Addition Approach: Let a and b be any whole numbers where $a \neq 0$. Then

$$a \cdot b = \underbrace{b + b + \dots + b}_{a \text{ times}}$$

• Rectangular Array Approach: Let a and b be any whole numbers. Then $a \cdot b$ is the number of elements in a rectangular array having a rows and b columns.

• Cartesian Product Approach: Let a and b be any whole numbers. If n(A) = a and n(B) = b, then $a \cdot b = n(A \times B)$.

PROPERTIES OF WHOLE NUMBER MULTIPLICATION

• Closure Property: The product of any two whole numbers is a whole number. Example 1: Determine if the following sets are closed under multiplication.

(a) $\{0, 1\}$

(b) $\{0, 1, 2\}$

• Commutative Property: Let a and b be whole numbers. Then

$$a \cdot b = b \cdot a.$$

• Associative Property: Let a, b, and c be any whole numbers. Then

$$(a \cdot b) \cdot c = a \cdot (b \cdot c).$$

Identity Property: There is a unique whole number 1 such that for all whole numbers a,
a · 1 = a = 1 · a.

One is called the **multiplicative identity**.

• **Distributive Property:** Let a, b, and c be whole numbers. Then

$$a(b+c) = ab + ac$$
$$a(b-c) = ab - ac$$

• Multiplication Property of Zero: For every whole number *a*,

$$a \cdot 0 = 0 \cdot a = 0.$$

DIVISION: dividend \div divisor = quotient

• Repeated Subtraction Approach:

• Missing Factor Approach: If a and b are any whole numbers with $b \neq 0$, then $a \div b = c$ if and only if $a = b \cdot c$ for some whole number c.

• Division Algorithm: If a and b are any whole numbers with $b \neq 0$, then there exist unique whole numbers q and r such that

$$a = bq + r,$$

where $0 \leq r < b$. (Here b is called the divisor, q is called the quotient, and r is the remainder.

• Division by and with Zero:

- 1. If $a \neq 0$, then $0 \div a = 0$
- 2. If $a \neq 0$, then $a \div 0 =$ undefined.
- 3. $0 \div 0 =$ undefined.