Section 2.4: Functions and Relations

Relation: is used to represent a relationship between 2 numbers or objects.

Examples: 5 is less than 7
I am shorter than my husband.
I am older than my brother.

Ways to represent a relation:

- Arrow diagram: Use arrows to indicate the relation.

Example 1: Given $\{2,4,6,8\}$, represent the relation "is a divisor of" using an arrow diagram.

- Ordered pairs: Uses ordered pairs to indicate the relation.

Example 2: Given $\{2,4,6,8\}$, represent the relation "is a divisor of" using ordered pairs.

THREE RELATION PROPERTIES:

1. Reflexive Property: A relation R on a set A is reflexive if $(a, a) \in R$ for all $a \in A$. (In other words, every element of A is related to itself).
2. Symmetric Property: A relation R on as set A is symmetric if whenever $(a, b) \in R$ then $(b, a) \in R$. (In other words, if a is related to b, then b is related to a.)
3. Transitive Property: A relation R on a set A is transitive if whenever $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$. (In other words, if a is related to b and b is related to c, then a is related to c.)

Equivalence relation: is a relation R on a set A which is reflexive, symmetric, and transitive.

Example 3: Determine if the following relations are reflexive, symmetric, and/or transitive.
(a) $\{(a, a),(b, a),(b, b),(c, a),(c, b),(c, c)\}$
(b)

(c) "is a multiple of"

Functions: are relations that match one element of the first set (called domain) to one element of the second set (called codomain) in such a way that no element in the first set is assigned to two different elements in the second set.

NOTE: A function can assign more than one element from the domain to the same element in the codomain.

Function notation: A function f that assigns an element of set A to an element in set B is denoted $f: A \rightarrow B$. If $a \in A$, then the function notation for the element in B that is assigned to a is $f(a)(\operatorname{read} f$ of $a)$.
range: is the set of all elements in the codomain that the function pairs with an element of the domain. Hence, the range is a subset of the codomain.

Ways to represent a function:

1. Arrow Diagram
2. Tables
3. Ordered pairs
4. Function machines
5. Formulas
6. Graphs

Sequence: is a list of numbers, called terms, arranged in a particular order.

Special Sequences:

- Arithmetic sequence: is a sequence in which successive terms differ by the SAME number, called the common difference.
- Geometric sequence: is a sequence in which successive terms are found by multiplying the previous term by the SAME number, called the common ratio.

Example 4: Determine if each of the following sequences are arithmetic, geometric, or neither. For arithmetic and geometric, find the 200th term.
(a) $7,20,33,46,59, \ldots$
(b) $2,5,10,50,500,250000, \ldots$
(c) $3,12,48,192, \ldots$

Example 5: How many terms are in the following sequence:
$3,8,13,18,23, \ldots, 343$?

