Topic 1: Statements

• <u>Statement</u>: A statement is a declarative sentence that is true or false but not both. It cannot be a question, command, or opinion. It must be true or false (not ambiguous).

Examples:	It is raining	Not Examples:	What time is it?
	(2)(3) = 6		Ohio is the nicest state.
	5 + 3 = 7		The big dog
	Ohio is the largest state		This sentence is false.

- Notation: Statements are represented by lowercase letters such as p, q, r, s.
- Negation: The negation of a statement p, denoted $\sim p$, is a statement with the opposite truth value of p. (i.e.— if p is true then $\sim p$ is false, and if p is false then $\sim p$ is true.)

Example 1: If p is the statement "The sky is blue" then translate $\sim p$.

LOGICAL CONNECTIVES: Two or more statements can be connected to form **compound statements**. The four commonly used **logical connectives** are "and", "or", "if-then", and "if and only if".

• <u>AND</u>: The conjunction of p and q, denoted $p \wedge q$, is the statement "p and q".

• <u>OR</u>: The **disjunction** of p and q, denoted $p \lor q$, is the statement "p or q".

• <u>IF-THEN</u>: An implication (or conditional statement), denoted $p \rightarrow q$, is the statement "If p then q". (p is called the hypothesis and q is called the conclusion.)

• IF AND ONLY IF: The **biconditional statement**, denoted $p \leftrightarrow q$, is the statement "p if and only if q". $(p \leftrightarrow q \text{ is the conjunction of } p \rightarrow q \text{ and } q \rightarrow p.)$

Example 2: If p is false and q is true, find the truth values for each of the following.

(a)
$$\sim p \lor q$$
 (f) $\sim p \to q$
(b) $p \land \sim q$ (g) $\sim (p \to q)$

(c)
$$\sim (p \lor q)$$
 (h) $(p \lor q) \to (p \land q)$

(d)
$$\sim (\sim p \land q)$$
 (i) $(p \lor \sim p) \to p$

(e)
$$\sim q \wedge \sim p$$
 (j) $(p \lor q) \longleftrightarrow (p \land q)$

Example 3: Let r, s and t represent the following statements:

- r is "roses are red" s is "the sky is blue"
- t is "turtles are green"

Translate the following statements into English.

(a) $r \wedge s$

(b) $r \wedge (s \lor t)$

- (c) $s \longrightarrow (r \wedge t)$
- (d) $(s \wedge \sim t) \longrightarrow \sim r$

Example 4: Write the following arguments in symbolic form using $p, q, r, \sim, \land, \lor, \longrightarrow, \longleftrightarrow$, where p, q, and r are the given statements.

 $\begin{array}{l} p & \text{is "birds can fly"} \\ q & \text{is "horses can run"} \\ r & \text{is "fish can swim"} \end{array}$

(a) Horses can run if and only if either birds cannot fly or fish can swim.

- (b) If birds can fly and horses cannot run, then fish cannot swim.
- (c) If it is not the case that either fish can swim or horses can run, then birds can fly.

- The **<u>converse</u>** of $p \to q$ is $q \to p$
- The **<u>inverse</u>** of $p \to q$ is $\sim p \to \sim q$
- The contrapositive of $p \to q$ is $\sim q \to \sim p$

Example 5: Consider the following implication:

If the bank was robbed, then I will not have any money.

(a) Find the inverse of the statement.

(b) Find the converse of the statement.

(c) Find the contrapositive of the statement.

• **logically equivalent**: Two statements are logically equivalent when they have the same truth tables.

Example 6: Using a truth table, determine which of the statements $p \longrightarrow q$, $q \longrightarrow p$, $\sim p \longrightarrow \sim q$, and $\sim q \longrightarrow \sim p$ are logically equivalent.

Example 7: Using a truth table, show that $\sim (p \longrightarrow q)$ and $p \wedge \sim q$ are logically equivalent.

Example 8: Using a truth table, show that $\sim (p \lor q)$ and $\sim p \land \sim q$ are logically equivalent.

Example 9: Using a truth table, show that $\sim (p \wedge q)$ and $\sim p \vee \sim q$ are logically equivalent.

• DeMorgan's Laws for Statements:

$$\sim (p \lor q) \iff \sim p \land \sim q$$
$$\sim (p \land q) \iff \sim p \lor \sim q$$

Example 10: Write the negation of each of the following statements.

(a) I do my homework and I pass my math class.

(b) I do my homework or I do not pass my math class.

(c) If I do my homework, then I will pass my math class.