## MATH 11009: <br> Exam \#2 (Spring 2009)

1. A manufacturer of clarinets has monthly fixed costs of $\$ 13,750$ and variable costs of $\$ 150$ per clarinet, and it sells each clarinet for $\$ 585$.
(a) Write the function that models the cost $C$ from the production of $x$ clarinets.
(b) Write the function that models the profit $P$ from the production and sale of $x$ clarinets.
(c) What is the profit if 75 clarinets are produced and sold?
2. Given $f(x)=4 x^{2}-24 x+7$.
(a) Find the vertex of $f$.
(b) Determine if the vertex is a maximum or minimum point. How do you know?
3. Explain how the graph of $y=-7 \sqrt[3]{x+5}+2$ can be obtained from the graph of $y=\sqrt[3]{x}$.
4. Suppose the graph of $y=|x|$ is shifted right 8 , reflected about the $x$-axis, vertically compressed by a factor of $\frac{6}{7}$, and shifted down 3 . What is the equation of the new graph?
5. The profit from making and selling $x$ units of a product is given by

$$
P(x)=-0.01 x^{2}+20 x-500
$$

dollars. How many units should be produced and sold in order to make a profit of $\$ 1400$ ?
6. Solve each of the following. Show all work and simplify your answers.
(a) $4 x^{2}-9 x-10=30-5 x^{2}$
(b) $3(9 x-2)^{2}-24=0$
(c) $6 x^{2}+12 x-10=0$
7. If a ball is thrown into the air at 29.4 meters per second from a height of 60 meters, its height (in meters) is given by

$$
h(t)=60+29.4 t-9.8 t^{2}
$$

where $t$ is in seconds.
(a) When does the ball reach its maximum height?
(b) What is the maximum height of the ball?
8. Give an example of a graph of a function that is NOT one-to-one, and explain why it is not one-to-one.
9. Let $H(x)=9(3-5 x)^{7}+6$. Find nontrivial functions $f$ and $g$ such that $(f \circ g)(x)=H(x)$.
10. Find the inverse of $f(x)=\frac{7 x+3}{2}$.
11. If $f(x)=4 x-3$ and $g(x)=x^{2}-5 x+9$ find
(a) $(f \circ g)(x)$
(b) $(g \circ f)(x)$
12. Be able to determine the equation of any graph given. See handout from section 4.1 for examples.

## ANSWERS

1. (a) $C(x)=13,750+150 x$
(b) $P(x)=435 x-13750$
(c) $P(75)=\$ 18,875$
2. (a) $(3,-29)$
(b) minimum since $a=4>0$; opens up
3. reflect across $x$-axis; vertical stretch by factor of 7 ; left 5 ; up 2
4. $y=-\frac{6}{7}|x-8|-3$
5. 100 units or 1900 units
6. (a) $x=-\frac{5}{3}, x=\frac{8}{3}$
(b) $x=\frac{2 \pm 2 \sqrt{2}}{9}$
(c) $x=-1 \pm \frac{2 \sqrt{6}}{3}$
7. (a) 1.5 seconds
(b) 82.05 m
8. any example that does not pass the horizontal line test will work.
9. $f(x)=9 x^{7}+6, \quad g(x)=3-5 x$
10. $f^{-1}(x)=\frac{2 x-3}{7}$
11. (a) $4 x^{2}-20 x+33$
(b) $16 x^{2}-44 x+33$
12. See section 4.1 handout for examples.
