1. Suppose $f(x)=9\left(x+\frac{5}{7}\right)^{2}+\frac{4}{5}$.
(a) $(0.5 \mathrm{pt})$ Give the coordinates of the vertex of the graph of this function.
(b) (0.5 pt) Determine if the vertex of this graph is a maximum point or a minimum point. Explain how you know.
2. Suppose $f(x)=4-9 x-3 x^{2}$
(a) (1 pt) Give the coordinates of the vertex of the graph of this function.
(b) (0.5 pt$)$ Determine if the vertex of this graph is a maximum point or a minimum point. Explain how you know.
3. A sidewalk espresso stand finds that the weekly profit for their business is a function of the price they charge per cup. If x is the price (in dollars) of one cup, the weekly profit P (in dollars) is given by

$$
P(x)=-2900 x^{2}+7250 x-2900
$$

(a) (1 pt) What price x per cup produces the maximum profit?
(b) (0.5 pt$)$ What is the maximum weekly profit?
4. (1.5 pts) Graph the following function:

$$
f(x)=\left\{\begin{array}{cl}
3 x+4 & \text { if } x \leq-2 \\
1 & \text { if }-2<x \leq 3 \\
-2 x+10 & \text { if } x>3
\end{array}\right.
$$

5. (1 pt) Solve: $6|7 x+3|-48=0$
6. (1.5 pts) Suppose the graph of $y=\sqrt[3]{x}$ is shifted right 6 units, reflected about the x-axis, vertically compressed by a factor of $\frac{2}{5}$, and shifted down 9 units. What is the equation that gives the new graph?
7. (1 pt) How is the graph of $y=3 \sqrt{x+7}+6$ transformed from the graph of $y=\sqrt{x}$. Be specific!
8. (0.5 pt each) Find the following if $f(x)= \begin{cases}8-4 x-2 x^{2} & \text { if } x \leq-2 \\ 6 x+1 & \text { if }-2<x \leq 4 \\ 5 x-x^{2} & \text { if } x>4\end{cases}$
(a) $f(2)=$
(b) $f(-3)=$
9. (1 pt each) Determine the equation of the given graph of a function. (Note there are no vertical stretches or compressions.)
(a)

(c)

(b)

