1. ( 0.5 pt each) Write each equation in exponential form.
(a) $\log _{4} 37=y$
(b) $\ln (x+2)=-6$
2. ( 0.5 pt each) Write each equation in logarithmic form.
(a) $3^{4}=81$
(b) $10^{-4}=\frac{1}{10000}$
3. (1 pt each) Evaluate each logarithm. Exact answers only.
(a) $\log _{4} 64=$
(c) $\log _{32} 8=$
(b) $\log _{1 / 5} 125=$
(d) $\log _{27} \frac{1}{9}=$
4. (1 pt) Use the Change of Base Formula and a calculator to evaluate $\log _{15} 23$ correct to four decimal places.
5. (1.5 pts) Rewrite the expression as the sum, difference, or product of logarithms, and simplify.

$$
\log _{4}\left(\frac{\sqrt[3]{x^{5}+3}}{x^{4}(x-7)^{3}}\right)
$$

6. (1.5 pts) Rewrite the following expression as a single logarithm.

$$
3 \ln x-5 \ln (x-6)+\frac{1}{4} \ln (x+9)
$$

7. (1 pt each) Use your knowledge of transformations to compare the graph of the following functions with the graph of $f(x)=5^{x}$
(a) $f(x)=5^{x-4}+2$
(b) $f(x)=5^{-x}-3$
8. ( 2 pts ) Solve for $x$. Give an exact answer and a decimal approximation accurate to four decimal places.

$$
6^{3 x-2}=5
$$

9. (2 pts) Solve: $\quad 5\left(3+e^{4 x}\right)=40$. Give the exact answer and a decimal approximation accurate to four decimal places.
10. (2.5 pts) Solve: $\log _{2} 2 x+\log _{2}(x+3)=3$
11. (2.5 pts) Solve for $x$. You must show all work. Exact answer(s) only.

$$
\ln (x+5)-\ln (x-3)=\ln x
$$

12. ( 2 pts ) During a 10 -year period of constant inflation, the value of $\$ 200,000$ property is given by the equation $v=200,000 e^{0.05 t}$ dollars. In how many years will the value of this building be $\$ 254,250$ ? (Give the exact answer and a decimal approximation accurate to two decimal places. )
13. ( 2 pts ) At the end of $t$ years, the future value of an investment of $\$ 25,000 \mathrm{in}$ an account that pays $12 \%$ compounded quarterly is

$$
A=25,000\left(1+\frac{0.12}{4}\right)^{4 t}
$$

dollars. In how many years will the investment amount to $\$ 60,000$ ? (Give the exact answer and a decimal approximation accurate to two decimal places. )

