MATH 11009: Composition Functions

 Section 4.2
- Combining Functions:

- Sum: $\quad(f+g)(x)=f(x)+g(x)$
- Difference: $\quad(f-g)(x)=f(x)-g(x)$
- Product: $\quad(f \cdot g)(x)=f(x) \cdot g(x)$
- Quotient: $\quad\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad(g(x) \neq 0)$
- Domain: The domain of a sum, difference, and product of f and g consists of all real numbers of the input variable for which f and g are defined. The domain of the quotient function consists of all real numbers for which f and g are defined and $g(x) \neq 0$.

Example 1. Let $f(x)=x^{3}$ and $g(x)=\sqrt{x+3}$. Find the following:
(a) $(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f \cdot g)(x)$
(d) $\left(\frac{f}{g}\right)(x)$

- Total Cost Function: denoted $C(x)$, is the total cost incurred in producing and selling x units of a certain commodity.
- Fixed costs: include such things as rent, utilities, and equipment, and they remain constant regardless of how many units are produced.
- Variable costs: are those directly related to the number of units produced.
- $C(x)=$ fixed costs + variable costs
- Revenue: denoted $R(x)$, is the money received by a company from the sale of x units of a certain commodity. Hence,

$$
R(x)=x \cdot p,
$$

where x is the number of units sold and p is dollars per unit.

- Profit Function: denoted $P(x)$, is the found by subtracting the cost from the revenue.

$$
P(x)=R(x)-C(x) \text {. }
$$

- Average Cost Function: denoted $\bar{C}(x)$, is the total cost divided by the number of units produced; hence,

$$
\bar{C}(x)=\frac{C(x)}{x} .
$$

Example 2. A manufacturer of computers has monthly fixed costs of $\$ 87,500$ and variable costs of $\$ 87$ per computer, and it sells the computer for $\$ 295$ per unit.
(a) Write the function that models the cost C from the production of x computers.
(b) Write the function that models the profit P from the production and sale of x computers.
(c) What is the profit if 700 computers are produced and sold in 1 month?
(d) Form the average cost function $\bar{C}(x)$. For what input value is \bar{C} defined.

- Composition of functions: The composition function, f of g, is denoted by $f \circ g$ and defined by

$$
(f \circ g)(x)=f(g(x))
$$

- Notes about composition functions:

- The domain of $f \circ g$ is the subset of the domain of g for which $f \circ g$ is defined.
- Likewise, $(g \circ f)(x)=g(f(x))$. The domain of $g \circ f$ is the subset of the domain of f for which $g \circ f$ is defined.
- In general, $(f \circ g)(x) \neq(g \circ f)(x)$

Example 3. For $f(x)=3 x-2 ; \quad g(x)=2 x^{2}+3 x+1$, find
(a) $(f \circ g)(x)$
(b) $(g \circ f)(x)$
(c) $(f \circ g)(2)$

Example 4. Let $f(x)=\sqrt{3-x} ; \quad g(x)=x-5$. Find $(f \circ g)(4)$.

Example 5. Suppose $H(x)=3(x-2)^{2}+4$. Find nontrivial functions f and g such that $F(x)=(f \circ g)(x)$.

Example 6. Suppose $H(x)=-5 \sqrt{8 x+3}+2$. Find nontrivial functions f and g such that $F(x)=(f \circ g)(x)$.

Example 7. A man's shoe that is size x in Britain is size $d(x)$ in the United States, where $d(x)=x+0.5$. A man's shoe that is size x in the United States is size $t(x)$ in Continental size, where $t(x)=x+34.5$. Find a function that will convert British shoe size to Continental show size.

