MATH 11009: Equations of lines Section 1.4

- Linear functions: A function f is a linear function if it can be written as

$$
f(x)=m x+b
$$

where m and b are constants. The graph of a linear function is always a straight line.

- Horizontal lines: Horizontal lines are given by equations of the type $y=b$ or $f(x)=b$.
- Vertical lines: Vertical lines are given by equations of the type $x=c$.
- To find the equation of a line: In order to find the equation of any line (that is not horizontal or vertical) we will always need two items: the slope and a point on the line. Once we have these two items, we need to use either the slope-intercept form or the point-slope formula to find the equation of the line. Although we have already discussed the slope-intercept form, it is stated here again for convenience.

Slope-intercept form: The slope-intercept form of an equation with slope m and y-intercept b is given by

$$
y=m x+b .
$$

Point-slope formula: The equation of the line with slope m and passing through (x_{1}, y_{1}) can be found using

$$
y-y_{1}=m\left(x-x_{1}\right) .
$$

Example 1. Find the equation of the line with slope $m=3$ and that passes through $(-2,5)$.

Example 2. Find the equation of the line with slope $m=-\frac{3}{4}$ and that passes through $(5,-2)$.

Example 3. Find the equation of the line passing through $(-2,6)$ and $(4,-3)$.

- Vertical Line: A vertical line has the form $x=a$ where a is a constant and a is the x-coordinate of any point on the line. A vertical line has undefined slope.
- Horizontal Line: A horizontal line has the form $y=b$ where b is a constant and b is the y-coordinate of any point on the line. A horizontal line has zero slope.

Example 4. Find the equation of the line passing through $(3,5)$ and $(3,-7)$.

Example 5. Find the equation of the horizontal line passing through $(-5,9)$.

- Average Rate of Change: The average rate of change of $f(x)$ with respect to x over the interval from $x=a$ to $x=b$ (where $a<b$) is calculated as

$$
\text { average rate of change }=\frac{\text { change in } f(x) \text { values }}{\text { corresponding changes in } x \text { values }}=\frac{f(b)-f(a)}{b-a}
$$

Note that the average rate of change between two points is the slope of the line joining those two points.

Example 6. For the function $f(x)=2 x^{2}-3 x+1$ find the average rate of change between $x=1$ and $x=3$.

Example 7. The composite SAT score for Beaufort county school district was 952 points in 2004, and the average rate of increase was 0.51 points per year. Write a linear function that models the SAT scores y as a function of x, the number of years after 2004 .

Example 8. A company buys and retails baseball caps. The total cost function is linear. The total cost for 200 caps is $\$ 2680$, and the total cost of 500 caps is $\$ 3530$. Write the equation that models this cost function.

- Parallel lines: Parallel lines are two lines in the same plane that never intersect.
- Perpendicular Lines: Two lines are perpendicular lines if they intersect to form a 90° angle.

Parallel and Perpendicular Lines

- Parallel lines have the same slope. So, $m_{1}=m_{2}$.
- Perpendicular lines have negative reciprocal slopes. In other words, $m_{1} \cdot m_{2}=-1$.

Example 9: Determine whether the following lines are parallel, perpendicular, or neither.

$$
3 x-5 y=10 \quad \text { and } \quad 5 x+3 y=7
$$

Example 10: Find the equation of the line that is parallel to $5 x-3 y=2$ and which passes through $(1,3)$.

Example 11: Find the equation of the line that is perpendicular to $3 x+2 y=1$ and which passes through $(4,-2)$.

Difference Quotients: $\frac{f(x+h)-f(x)}{h}$
Example 12: Given $f(x)=7 x-3$, find $\frac{f(x+h)-f(x)}{h}$.

Example 13: Given $f(x)=2 x^{2}-5 x+7$, find $\frac{f(x+h)-f(x)}{h}$.

