MATH 11009: Equations of lines Section 1.4

• Linear functions: A function f is a linear function if it can be written as

$$f(x) = mx + b$$

where m and b are constants. The graph of a linear function is always a straight line.

- Horizontal lines: Horizontal lines are given by equations of the type y = b or f(x) = b.
- Vertical lines: Vertical lines are given by equations of the type x = c.
- To find the equation of a line: In order to find the equation of any line (that is not horizontal or vertical) we will always need two items: the slope and a point on the line. Once we have these two items, we need to use either the slope-intercept form or the **point-slope formula** to find the equation of the line. Although we have already discussed the slope-intercept form, it is stated here again for convenience.

Slope-intercept form: The slope-intercept form of an equation with slope m and y-intercept b is given by

y = mx + b.

Point-slope formula: The equation of the line with slope m and passing through (x_1, y_1) can be found using

 $y - y_1 = m(x - x_1).$

Example 1. Find the equation of the line with slope m = 3 and that passes through (-2, 5).

Example 2. Find the equation of the line with slope $m = -\frac{3}{4}$ and that passes through (5, -2).

Example 3. Find the equation of the line passing through (-2, 6) and (4, -3).

- Vertical Line: A vertical line has the form x = a where a is a constant and a is the x-coordinate of any point on the line. A vertical line has undefined slope.
- Horizontal Line: A horizontal line has the form y = b where b is a constant and b is the y-coordinate of any point on the line. A horizontal line has zero slope.

Example 4. Find the equation of the line passing through (3, 5) and (3, -7).

Example 5. Find the equation of the horizontal line passing through (-5, 9).

• Average Rate of Change: The average rate of change of f(x) with respect to x over the interval from x = a to x = b (where a < b) is calculated as

average rate of change =	change in $f(x)$ values	f(b) - f(a)
	$\overline{\text{corresponding changes in } x \text{ values}}$	b-a

Note that the average rate of change between two points is the slope of the line joining those two points.

Example 6. For the function $f(x) = 2x^2 - 3x + 1$ find the average rate of change between x = 1 and x = 3.

Example 7. The composite SAT score for Beaufort county school district was 952 points in 2004, and the average rate of increase was 0.51 points per year. Write a linear function that models the SAT scores y as a function of x, the number of years after 2004.

Example 8. A company buys and retails baseball caps. The total cost function is linear. The total cost for 200 caps is \$2680, and the total cost of 500 caps is \$3530. Write the equation that models this cost function.

- Parallel lines: Parallel lines are two lines in the same plane that never intersect.
- **Perpendicular Lines:** Two lines are **perpendicular lines** if they intersect to form a 90° angle.

Parallel and Perpendicular Lines

- **Parallel lines** have the same slope. So, $m_1 = m_2$.
- **Perpendicular lines** have negative reciprocal slopes. In other words, $m_1 \cdot m_2 = -1$.

Example 9: Determine whether the following lines are parallel, perpendicular, or neither.

3x - 5y = 10 and 5x + 3y = 7

Example 10: Find the equation of the line that is parallel to 5x - 3y = 2 and which passes through (1,3).

Example 11: Find the equation of the line that is perpendicular to 3x + 2y = 1 and which passes through (4, -2).

Difference Quotients: $\frac{f(x+h) - f(x)}{h}$

Example 12: Given f(x) = 7x - 3, find $\frac{f(x+h) - f(x)}{h}$.

Example 13: Given $f(x) = 2x^2 - 5x + 7$, find $\frac{f(x+h) - f(x)}{h}$.