MATH 11009: Functions

- Function: A function is a rule or correspondence that assigns to each element of one set, called the domain, exactly one element of a second set, called the range. A function may be defined by a set of ordered pairs, a table, a graph, or an equation.
- Domain: The domain of a function is the set of all inputs. If x is any element in the domain, then x is called the independent variable.
- Range: The range of a function is the set of all outputs. If y represents an output of the function f from an input x, then y is called the dependent variable and is denoted by $f(x)$.

Example 1: Determine which of the following are examples of functions. For each function, determine the domain and range.

1. $\{(1,2),(3,6),(6,8),(9,2),(12,5)\}$
2.

x	1	2	-5	2	-4
y	-1	4	6	7	9

3.

4.

5. $x+y^{2}=9$ where x is the input.

Example 2: For each of the following, determine whether or not the indicated relationship represents a function. For each function that is defined, give the domain and range.

1. The weight of a man in year x.
2. The daily profit P (in dollars) from the sale of x pounds of candy as shown in the following table:

x	0	50	100	150	200	250	300
P	-100	1050	1800	2050	1800	1050	-200

Example 3: Give an example of a graph that does not represent a function. What conclusion can you make?

Example 4: If $A(m)=25-3 m^{2}$, find

1. $A(2)$
2. $A(-3)$

Example 5: The following graph gives the number of men in the workforce (in millions) as a function g of the year for selected years t from 1890 to 1990 .

1. Find and interpret $g(1940)$
2. What is the input t if the output is $g(t)=51,600,000$ men?
3. What can be said about the number of men in the workforce from 1890 to 1990 ?
4. What is the maximum number of men in the workforce during the period shown in the graph?

Finding Domain of a function: If the domain of a function is not provided, we assume that it includes all real numbers except those that give nonreal or undefined outputs. Examples of values that are not in the domain of a function are:

- values that result in a denominator of zero
- values that result in an even root of a negative number

Example 6: For each of the following functions determine the domain.

1. $f(x)=\frac{x-3}{x+7}$
2. $g(x)=\frac{x}{x^{2}-5 x+6}$
3. $h(x)=\sqrt{x-7}$

Homework: pp 19-26; 1-23 odd, 29-45 odd, 51, 53

