Example 1. Given $f(x) = 3x + 2$ and $g(x) = \frac{x - 2}{3}$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.

- **Inverse Functions**: Functions f and g for which $f(g(x)) = x$ for all x in the domain of g, and $g(f(x)) = x$ for all x in the domain of f, are called inverse functions. In this case, we denote g by $f^{-1}(x)$, read as f inverse.

- The functions f and g are inverse functions, if whenever (a, b) satisfies $y = f(x)$, the pair (b, a) satisfies $y = g(x)$.

- Not all functions have an inverse. In fact, only one-to-one functions have an inverse.

- **One-to-One Functions**: A one-to-one function has exactly one output for each input and exactly one input for each output.

- **Horizontal Line Test**: A function is one-to-one if no horizontal line can intersect the graph of the function in more than one point.
Example 2. Determine if the function f defined below has an inverse.

(a) $\{(3, 4), (6, 7), (9, 2), (4, 8)\}$

(b) $\{(1, 9), (2, 7), (3, 2), (4, 7)\}$

(c)

\[
\begin{array}{ccc}
1 & \rightarrow & 1 \\
2 & \rightarrow & 4 \\
3 & \rightarrow & 9 \\
-3 & \rightarrow & 9 \\
\end{array}
\]

(d) $f(x) = |x - 3| + 2$

(e) $f(x) = -\sqrt{x + 1} + 4$
• To find the inverse of a function that is defined by \(y = f(x) \):

1. Rewrite the equation replacing \(f(x) \) with \(y \).
2. Interchange \(x \) and \(y \) in the equation defining the function.
3. Solve the new equations for \(y \). If this equation cannot be solved uniquely for \(y \), the original function has no inverse function.
4. Replace \(y \) with \(f^{-1}(x) \).

Example 3. Find the inverse of \(f(x) = \frac{9x - 4}{2} \).

Example 4. Find the inverse of \(f(x) = \frac{1}{x - 3} \).
Example 5. Find the inverse of \{(3, 4), (6, 7), (9, 2), (4, 8)\}.

Example 6. If function \(h\) has an inverse and \(h^{-1}(9) = -1\), find \(h(-1)\).

- **Graphs of Inverse Functions**: The graphs of a function and its inverse are symmetric with respect to the line \(y = x\).

Example 7. The graph of \(f\) is given below. Sketch the graph of the \(f^{-1}\).