MATH 11009: Inverse Functions Section 4.3

Example 1. Given $f(x)=3 x+2$ and $g(x)=\frac{x-2}{3}$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.

- Inverse Functions: Functions f and g for which $f(g(x))=x$ for all x in the domain of g, and $g(f(x))=x$ for all x in the domain of f, are called inverse functions. In this case, we denote g by $f^{-1}(x)$, read as f inverse.
- The functions f and g are inverse functions, if whenever (a, b) satisfies $y=f(x)$, the pair (b, a) satisfies $y=g(x)$.
- Not all functions have an inverse. In fact, only one-to-one functions have an inverse.
- One-to-One Functions: A one-to-one function has exactly one output for each input and exactly one input for each output.
- Horizontal Line Test: A function is one-to-one if no horizontal line can intersect the graph of the function in more than one point.

Example 2. Determine if the function f defined below has an inverse.
(a) $\{(3,4),(6,7),(9,2),(4,8)\}$
(b) $\{(1,9),(2,7),(3,2),(4,7)\}$
(c)

(d) $f(x)=|x-3|+2$
(e) $f(x)=-\sqrt{x+1}+4$

- To find the inverse of a function that is defined by $y=f(x)$:

1. Rewrite the equation replacing $f(x)$ with y.
2. Interchange x and y in the equation defining the function.
3. Solve the new equations for y. If this equation cannot be solved uniquely for y, the original function has no inverse function.
4. Replace y with $f^{-1}(x)$.

Example 3. Find the inverse of $f(x)=\frac{9 x-4}{2}$.

Example 4. Find the inverse of $f(x)=\frac{1}{x-3}$

Example 5. Find the inverse of $\{(3,4),(6,7),(9,2),(4,8)\}$.

Example 6. If function h has an inverse and $h^{-1}(9)=-1$, find $h(-1)$.

- Graphs of Inverse Functions: The graphs of a function and its inverse are symmetric with respect to the line $y=x$.

Example 7. The graph of f is given below. Sketch the graph of the f^{-1}

