MATH 11009: Inverse Functions Section 4.3

Example 1. Given f(x) = 3x + 2 and $g(x) = \frac{x-2}{3}$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.

- Inverse Functions: Functions f and g for which f(g(x)) = x for all x in the domain of g, and g(f(x)) = x for all x in the domain of f, are called inverse functions. In this case, we denote g by $f^{-1}(x)$, read as f inverse.
- The functions f and g are inverse functions, if whenever (a, b) satisfies y = f(x), the pair (b, a) satisfies y = g(x).
- Not all functions have an inverse. In fact, only one-to-one functions have an inverse.
- **One-to-One Functions:** A one-to-one function has exactly one output for each input and exactly one input for each output.
- Horizontal Line Test: A function is one-to-one if no horizontal line can intersect the graph of the function in more than one point.

Example 2. Determine if the function f defined below has an inverse.

(a) $\{(3,4), (6,7), (9,2), (4,8)\}$

(b) $\{(1,9), (2,7), (3,2), (4,7)\}$

(c)

(d)
$$f(x) = |x - 3| + 2$$

(e)
$$f(x) = -\sqrt{x+1} + 4$$

• To find the inverse of a function that is defined by y = f(x):

- 1. Rewrite the equation replacing f(x) with y.
- 2. Interchange x and y in the equation defining the function.
- 3. Solve the new equations for y. If this equation cannot be solved uniquely for y, the original function has no inverse function.
- 4. Replace y with $f^{-1}(x)$.

Example 3. Find the inverse of $f(x) = \frac{9x-4}{2}$.

Example 4. Find the inverse of $f(x) = \frac{1}{x-3}$

Example 5. Find the inverse of $\{(3,4), (6,7), (9,2), (4,8)\}$.

Example 6. If function h has an inverse and $h^{-1}(9) = -1$, find h(-1).

• Graphs of Inverse Functions: The graphs of a function and its inverse are symmetric with respect to the line y = x.

Example 7. The graph of f is given below. Sketch the graph of the f^{-1}

