MATH 11009: Solving Polynomial Equations Section 6.3

- Recall the following properties from Chapter 3:
- Zero Product Property: For real numbers a and b, the product $a b=0$ if and only if either $a=0$ or $b=0$ or both a and b are zero. (Note that this can be extended to any number of factors.)
- Square Root Method: The solutions of the quadratic equation $x^{2}=C$ are $x=\sqrt{C}$ and $x=-\sqrt{C}$. These solutions can be combined as $x= \pm \sqrt{C}$. Note that this method can also be used to solve a quadratic equation of the form $(a x+b)^{2}=C$.
- The Root Method: The real solutions of the equation $x^{n}=C$ are found by taking the nth root of both sides:

$$
x=\sqrt[n]{C} \quad \text { if } n \text { is odd } \quad x= \pm \sqrt[n]{C} \quad \text { if } n \text { is even and } C \geq 0 .
$$

Note that this method can also be used to solve an equation of the form $(a x+b)^{n}=C$.

Example 1. Solve: $12 x^{3}+10 x^{2}-8 x=0$

Example 2. Solve: $x^{3}+5 x^{2}-7 x-35=0$

Example 3. Solve: $2 x^{4}-162=0$

Example 4. Solve: $\quad 4(2 x-1)^{3}=32$

Example 5. Solve: $\quad 3(3 x+2)^{4}=21$

Example 6. The revenue from the sale of a product is given by the function

$$
R(x)=12,000 x-0.003 x^{3}
$$

Find the number of units that must be sold to give zero revenue.

Example 7. Suppose $\$ 5,000$ is invested in an account for 4 years at a rate of $r \%$ compounded annually. Find r (as a percent) if the future value of the account is $\$ 10,368$.

Recall the following concepts:

- Zero: If P is a polynomial and if c is a number such that $P(c)=0$ then c is a zero of P. In fact, the following are all equivalent:
* c is a zero of P
* $(c, 0)$ is an x-intercept of the graph of P (when c is a real number)
* $x-c$ is a factor of P
* $x=c$ is a solution of the equation $P(x)=0$
- Even and Odd Multiplicity: Let $k \geq 1$. If $(x-c)^{k}$ is a factor of a polynomial function P and $(x-c)^{k+1}$ is not a factor of P and:
* k is odd, then the graph crosses the x-axis at $(c, 0)$.
* k is even, then the graph is tangent to the x-axis at $(c, 0)$.

Example 8. Below is the graph of $f(x)=x^{4}-5 x^{3}-3 x^{2}+13 x+10$. Use the graph of f to (a) solve $f(x)=0$, and (b) find the factorization of $f(x)$.

