MATH 11009: Transformations Section 4.1

- Vertical Shift: Suppose that k > 0.
 - The equation y = f(x) + k shifts the graph of f(x) up k units. (Adding a constant on the outside of a functions shifts the graph up.)
 - The equation y = f(x) k shifts the graph of f(x) down k units. (Subtracting a constant on the outside of a function shifts the graph down.)
- Horizontal Shift: Suppose that h > 0.
 - The equation y = f(x + h) shifts the graph of f(x) to the left h units. (Adding a constant inside the function shifts the graph left.)
 - The equation y = f(x h) shifts the graph of f(x) to the right h units. (Subtracting a constant inside the function shifts the graph right.)

• Reflections:

- The equation y = -f(x) reflects the graph of f(x) with respect to the x-axis. (Multiplying by a negative on the outside of a function flips the graph with respect to the x-axis.)
- The equation y = f(-x) reflects the graph of f(x) with respect to the the y-axis. (Multiplying by a negative inside the function flips the graph with respect to the y-axis.)

• Vertical Stretching and Compression:

- When |a| > 1, the equation y = af(x) stretches the graph of f(x) vertically by a factor of |a|. (Multiplying by a number, larger than one in absolute value, on the outside of a function causes the graph to be stretched by a factor of |a|.)
- When |a| < 1, the equation y = af(x) compresses the graph of f(x) vertically by a factor of |a|. (Multiplying by a number, less than one in absolute value, on the outside of a functions causes the graph to compress or shrink by a factor of |a|.)

Example 1. Explain how the graph of g is obtained from the graph of f. Be specific!

(a)
$$f(x) = x^2$$
; $g(x) = (x - 4)^2$

(b)
$$f(x) = x^2$$
; $g(x) = (x+7)^2 - 5$

(c)
$$f(x) = \sqrt{x};$$
 $g(x) = 3\sqrt{x+1}$

(d)
$$f(x) = x^3$$
; $g(x) = \frac{1}{4}(x-5)^3 + 2$

(e)
$$f(x) = \sqrt[3]{x};$$
 $g(x) = -4\sqrt[3]{x-2} + 6$

Example 2. Suppose the graph of $y = x^{3/2}$ is shifted to the right 4 units, reflected about the *x*-axis, and shifted down 5 units. What is the equation that gives the new graph?

Example 3. A function f is given, and the indicated transformations are applied to its graph in the given order. Write the equation for the final transformed graph.

(a) $f(x) = \sqrt{x}$; reflected about the *y*-axis, vertically compressed by a factor of $\frac{1}{9}$, vertical shift down 8 units.

(b) $f(x) = x^2$; reflected about the x-axis, vertically stretched by a factor of 8, horizontal shift left 5 units

Example 4. The number of U.S. aircraft accidents, for all military services, can be modeled by $y = 0.184x^2 - 5.437x + 58.427$, with x = 0 in 1970. Rewrite the model with x equal to the number of years from 1960.

Algebraic Tests for Symmetry:

- Symmetric with respect to the x-axis: If replacing y with -y produces an equivalent equation, then the graph is symmetric with respect to the x-axis.
- Symmetric with respect to the y-axis: If replacing x with -x produces an equivalent equation, then the graph is symmetric with respect to the y-axis.
- Symmetric with respect to the origin: If replacing x with -x AND y with -y produces an equivalent equation, then the graph is symmetric with respect to the origin.

Example 7. Determine algebraically whether the graph of the given equation is symmetric with respect to the x-axis, the y-axis, and/or the origin.

(a)
$$y = -x^2 + 4$$
 (b) $y = -x^3 + 5x$

Even and Odd Functions:

- Even Function: If the graph of a function f is symmetric with respect to the y-axis, we say that it is an even function. That is, for each x in the domain of f, f(-x) = f(x).
- Odd Function: If the graph of a function f is symmetric with respect to the origin, we say that it is an odd function. That is, for each x in the domain of f, f(-x) = -f(x).

Example 6. Determine if the following functions are even, odd, or neither.

(a)
$$f(x) = 7x^3 - 5x$$
 (c) $h(x) = 2x^2 + x + 1$

(b)
$$g(x) = 3x^2 + 4$$
 (d) $k(x) = |x+7|$