## MATH 11010: <br> Exam \#3 (Fall 2011)

1. Suppose a polynomial function with rational coefficients has

$$
8 i, \quad 3-5 \sqrt{7}, \quad \frac{2}{3}, \quad \text { and } \quad 5-3 i
$$

as some of its zeros. List the values that must also be zeros.
2. Find a polynomial function with zeros $x=2$ (multiplicity 3$), x=-9$ (multiplicity 1 ), and $x=0$ (multiplicity 2). You may leave your answer in factored form.
3. Use the Rational Zero Theorem to list all possible rational zeros of

$$
f(x)=4 x^{6}-3 x^{4}+2 x-9
$$

4. Use synthetic division to divide

$$
P(x)=3 x^{5}-4 x^{3}+9 x^{2}+2 x-5 \quad \text { by } \quad x+2 .
$$

Identify the quotient and remainder. Be specific.
5. Use synthetic division to find $P\left(-\frac{3}{4}\right)$ for $P(x)=8 x^{4}+2 x^{3}+13 x^{2}-4 x+5$. Be sure to label your answer.
6. Let $P(x)=6 x^{4}-23 x^{3}-40 x^{2}+109 x+140$.

(a) Show that $x=-\frac{5}{3}$ is a zero.
(b) Find all other zeros of $P$. You must show all work. (Show algebraically that they are zeros).
7. Consider $P(x)=-18 x^{4}+63 x^{3}-34 x^{2}-44 x+8$ whose graph is given below. Find all zeros of this function. (Show algebraically that they are zeros).

8. Given below is the graph of $f$.

(a) Is the degree of $f$ even or odd?
(b) Is the leading coefficient of $f$ positive or negative?
(c) Determine the interval(s) where $f(x)>0$.
(d) Determine the interval(s) where $f(x)<0$.
(e) List the real zeros of $f$ AND state whether each zero has even or odd multiplicity.
9. Find the equation of the vertical asymptote(s) of the following functions. Be specific!
(a) $f(x)=\frac{6 x^{2}-5 x+4}{21 x^{2}-x-10}$
(b) $g(x)=\frac{3 x+11}{27 x^{3}-15 x}$
10. Find the equation of the horizontal asymptote of the following functions, if one exists. Be specific!
(a) $f(x)=\frac{7 x^{4}-11 x+9}{3 x^{2}-x-2}$
(b) $g(x)=\frac{8 x^{2}-2 x-3}{25 x^{2}-16}$
11. Find all zeros of $P(x)=-x^{5}+2 x^{4}-10 x^{3}-8 x^{2}+43 x-26$.

12. Find a rational function that satisfies the following conditions:

$$
\begin{aligned}
\text { Vertical Asymptotes: } & x=-\frac{2}{3}, \quad x=\frac{1}{4} \\
\text { Horizontal Asymptote: } & y=\frac{5}{6}
\end{aligned}
$$

13. Solve: $6 x^{3}+8 x^{2}>0$
14. Solve: $8 x^{2}-18 x-5 \geq 0$
15. Solve: $\frac{x-6}{4 x^{2}-4 x-3} \leq 0$

## ANSWERS

1. $-8 i, 3+5 \sqrt{7}, 5+3 i$
2. $f(x)=x^{2}(x-2)^{3}(x+9)$
3. $\pm 1, \pm 3, \pm 9, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2}, \pm \frac{1}{4}, \pm \frac{3}{4}, \pm \frac{9}{4}$
4. See HW \#4
5. $P\left(-\frac{3}{4}\right)=17$
6. (a) Show using synthetic division that the remainder is zero.
(b) $x=4, \quad x=\frac{3 \pm \sqrt{65}}{4}$
7. $x=2$ (multiplicity 2 ), $x=\frac{1}{6}, \quad x=-\frac{2}{3}$
8. (a) odd
(d) $(-\infty,-1)$
(b) positive
(e) $x=-1$ odd, $x=0$ even, $x=4$ even
(c) $(-1,0) \cup(0,4) \cup(4, \infty)$
9. (a) $x=\frac{5}{7}, \quad x=-\frac{2}{3}$
(b) $x=0, \quad x= \pm \frac{\sqrt{5}}{3}$
10. (a) no horizontal asymptote
(b) $y=\frac{8}{25}$
11. See HW \#4
12. See HW \#5
13. $\left(-\frac{4}{3}, 0\right) \cup(0, \infty)$
14. See HW \#5
15. See HW \#5
