MATH 11010:
 Exam \#3 (Fall 2012)

1. Determine if the following function is an even, odd, or neither function.
(a) $f(x)=-3 x^{3}+7 x-9$
(b) $f(x)=2 x^{4}+6 x^{2}-3$
2. Find the equation of the horizontal asymptote of the following functions, if one exists. Be specific!
(a) $f(x)=\frac{5 x^{2}-20}{4 x^{3}-12 x^{2}-16 x}$
(b) $g(x)=\frac{35 x^{2}+2 x-1}{12 x^{2}+x-6}$
3. Find the equation of the vertical asymptote(s) of the following functions. Be specific!
(a) $f(x)=\frac{5 x^{2}-20}{4 x^{3}-12 x^{2}-16 x}$
(b) $g(x)=\frac{35 x^{2}+2 x-1}{12 x^{2}+x-6}$
4. Find a rational function that satisfies the following conditions:

$$
\begin{aligned}
\text { Vertical Asymptotes: } & x=\frac{4}{5}, \quad x=-\frac{2}{3} \\
\text { Horizontal Asymptote: } & y=\frac{7}{30}
\end{aligned}
$$

5. Find a polynomial function with zeros $x=-\frac{1}{5}$ (multiplicity 2), $x=0$ (multiplicity 3), and $x=4$ (multiplicity 1). You may leave your answer in factored form.
6. Use the Rational Zero Theorem to list all possible rational zeros of

$$
f(x)=7 x^{4}-8 x^{3}+5 x^{2}-3 x+6 .
$$

7. Use synthetic division to divide

$$
P(x)=2 x^{5}+3 x^{4}+25 x^{2}-8 x-10 \quad \text { by } \quad x+3 .
$$

Identify the quotient and remainder. Be specific.
8. Suppose a polynomial function with rational coefficients has

$$
\frac{8}{5}, \quad 3+7 i, \quad-4, \quad \text { and } \quad 6-2 \sqrt{5}
$$

as some of its zeros. List the values that must also be zeros.
9. Consider $P(x)=3 x^{5}-13 x^{4}-28 x^{3}+126 x^{2}+20 x-48$ whose graph is given below.

(a) Show that $x=-\frac{2}{3}$ is a zero.
(b) Find all other zeros of P. You must show all work. (Show algebraically that they are zeros).
10. Consider $P(x)=x^{5}+x^{4}+x^{3}+17 x^{2}+8 x-28$ whose graph is given below. Find all zeros of this function. (Show algebraically that they are zeros).

11. Find all zeros of $P(x)=8 x^{4}+38 x^{3}+9 x^{2}-119 x-98$.

12. Given below is the graph of f.

(a) Is the degree of f even or odd?
(b) Is the leading coefficient of f positive or negative?
(c) Determine the interval(s) where $f(x)>0$.
(d) Determine the interval(s) where $f(x)<0$.
(e) List the real zeros of f AND state whether each zero has even or odd multiplicity.
13. Solve: $6 x^{2}-5 x-4 \geq 0$
14. Solve: $\frac{3 x^{2}}{2 x^{2}+x-21} \geq 0$

ANSWERS

1. (a) neither
(b) even
2. (a) $y=0$
(b) $y=\frac{35}{12}$
3. (a) $x=0, x=4, x=-1$
(b) $x=-\frac{3}{4}, x=\frac{2}{3}$
4. $\frac{7 x^{2}}{30 x^{2}-4 x-16}$
5. $P(x)=x^{3}(5 x+1)^{2}(x-4)$
6. $\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{7}, \pm \frac{2}{7}, \pm \frac{3}{7}, \pm \frac{6}{7}$
7. $R(x)=-4, Q(x)=2 x^{4}-3 x^{3}+9 x^{2}-2 x-2$
8. $3-7 i, 6+2 \sqrt{5}$
9. (a) use synthetic division to show that the remainder is 0 .
(b) $x=-3, x=4, x=2 \pm \sqrt{2}$
10. $x=-2($ mult 2$), x=1, x=1 \pm \sqrt{6} i$
11. $x=-1, x=-2, x=\frac{7}{4}, x=-\frac{7}{2}$
12. (a) odd
(b) negative
(c) $(-\infty,-4) \cup(-4,0)$
(d) $(0,2) \cup(2, \infty)$
(e) -4 even, 0 odd, 2 even
13. $\left(-\infty,-\frac{1}{2}\right] \cup\left[\frac{4}{3}, \infty\right)$
14. $\left(-\infty,-\frac{7}{2}\right) \cup(3, \infty)$
