MATH 11010: Exam #4 (Fall 2012)

- 1. If \$16,275 is invested in an account paying $3\frac{5}{8}\%$ interest per year, compounded quarterly, how much will be in the account after 8 years? (Round answer to two decimal places.)
- 2. Suppose that 5,000 is invested today in an account paying $2\frac{1}{2}\%$ interest compounded continuously. How long will it take the investment to triple in value? (Round answer to two decimal places.)
- 3. Use the Laws of Logarithms to rewrite the expression in a form with no logarithm of a product, quotient, or power where possible. In other words, write the following expression in expanded form.

$$\ln \frac{\sqrt{5x-3}}{x^7(x^2+4)}$$

4. Rewrite the following expression as a single logarithm.

$$4 \log x - 2 [\log(x-2) - 5 \log(x+4)]$$

- 5. Find the domain of $y = \ln(7x + 6)$
- 6. Find the inverse for $f(x) = \frac{8x 5}{7x}$
- 7. The half-life of a radioactive isotope is 27 years. Suppose we begin with a 40 g sample.
 - (a) Find the function that models the amount of material remaining after t years. (Round k to four decimal places.)
 - (b) After how long will only 8 g of the sample remain?
- 8. Solve for x. Give an exact answer and a decimal approximation, accurate to four decimal places.

$$5(3 + e^{-4x}) = 45$$

9. Solve for x. Give an exact answer and a decimal approximation, accurate to four decimal places.

$$4^{5x+3} = 7$$

10. Solve for x. Give an exact answer and a decimal approximation, accurate to four decimal places.

$$2e^{6x} - 13e^{3x} + 20 = 0$$

11. Solve for x. You must show all work. Exact answer(s) only.

$$\log_5(6x+7) - \log_5(x-3) = 2$$

12. Solve for x. You must show all work. Exact answer(s) only.

$$\log_7(2x-1) + \log_7(x+3) = \log_7 6x$$

13. Solve for x. You must show all work. Exact answer(s) only.

$$-6 + \log_2(x - 7) = 0$$

14. Evaluate. Exact Answer Only.

(a)
$$\log_{1/27} 3 =$$

(b)
$$\log_7 343 =$$

15. Rewrite each expression in exponential form.

(a)
$$\ln 6x = 2$$

(b)
$$\log_4 7x = -5$$

16. Rewrite each expression in logarithmic form.

(a)
$$\frac{1}{16}^{-1/2} = 4$$

(b)
$$17 = e^y$$

17. Sketch the graph of each function. You must include the horizontal asymptote and label one point on the graph.

(a)
$$f(x) = \left(\frac{2}{3}\right)^{x+2} + 4$$
 (b) $f(x) = 8^{x-3} - 2$

18. Given that $\log_a 3 \approx 0.792, ~\log_a 5 \approx 1.161, ~\log_a 7 \approx 1.404, \text{ find}$

$$\log_a \frac{5}{63}$$
,

if possible. Round answer to three decimal places.

ANSWERS

3.
$$\frac{1}{2}\ln(5x-3) - 7\ln x - \ln(x^2+4)$$

4.
$$\log \frac{x^4(x+4)^{10}}{(x-2)^2}$$

5.
$$x > -\frac{6}{7}$$

6.
$$f^{-1}(x) = \frac{-5}{7x - 8}$$

7. (a)
$$A = 40e^{-0.0257t}$$

8.
$$x = \frac{-\ln 6}{4} \approx -0.4479$$

9.
$$x = \frac{\ln 7 - 3 \ln 4}{5 \ln 4} \approx -0.3193$$

10.
$$x = \frac{\ln \frac{5}{2}}{3} \approx 0.3054$$
; $x = \frac{\ln 4}{3} \approx 0.4621$

11.
$$x = \frac{82}{19}$$

12.
$$x = \frac{3}{2}$$
; (NOTE: $x = -1$ does not check)

13.
$$x = 71$$

14. (a)
$$-\frac{1}{3}$$

15. (a)
$$6x = e^2$$
 (b) $7x = 4^{-5}$

16. (a)
$$\log_{1/16} 4 = -\frac{1}{2}$$

(b) $\ln 17 = y$

17. See instructor for answer.

$$18. -1.827$$