MATH 11010: Exam \#1 (Spring 2010)

1. Consider $6 y+9 x^{2}=15$.
(a) Find the x-intercept(s) of this function.
(b) Find the y-intercept(s) of this function.
2. Find the equation of the circle with endpoints of the diameter at $(8,6)$ and $(-20,-4)$.
3. Determine which of the following are examples of functions. If it is not a function, state why.
(a) $\{(3,2),(5,-8),(7,6),(5,4),(9,11)\}$
(b)

x	3	6	9	12	15
y	-5	8	12	8	9

(c)

4. Give an example of a graph that is NOT a function, and tell why it is not a function.
5. Given $f(x)=2 x^{2}+7 x-9$, find and simplify:
(a) $f(-2)=$
(b) $f(x+h)=$
6. Find the domain for each function.
(a) $\quad f(x)=\frac{5 x-6}{8 x^{2}+14 x-15}$
(b) $\quad g(x)=\frac{\sqrt{5-4 x}}{2 x+15}$
7. Given below is a linear function.

(a) Find the slope of this linear function.
(b) Find the equation of this linear function.
8. Find the slope of the line passing through $\left(\frac{3}{4},-5\right)$ and $\left(-3, \frac{5}{2}\right)$.
9. Find the equation of the line with slope $m=\frac{2}{3}$ and which passes through $(4,-2)$.
10. Find the equation of the line perpendicular to $3 x-5 y=4$ and which passes through $(2,-5)$.
11. Determine the equation of the line parallel to the x-axis that passes through $(3,6)$.
12. Tennis Pros experienced fixed costs of $\$ 1250$ and variable costs of $\$ 14$ for each tennis racquet that is restrung.
(a) Write an equation that can be used to determine the total cost $C(x)$ encountered by Tennis Pros when x racquets are restrung.
(b) Calculate the total cost when 15 racquets are restrung.
(c) Calculate $C(20)$ and interpret this value in the context of the problem.
13. Find the following if $h(x)= \begin{cases}9 x^{2}-3 x+1 & \text { if } x \leq-2 \\ 3-5 x & \text { if }-2<x<4 \\ 2 x^{2}+3 & \text { if } x \geq 4\end{cases}$
(a) $h(5)=$
(b) $h(-2)=$
(c) $h(1)=$
14. Graph $f(x)=\left\{\begin{array}{cl}3 x+4 & \text { if } x \leq-2 \\ 1 & \text { if }-2<x \leq 3 \\ -2 x+8 & \text { if } x>3\end{array}\right.$
15. Given below is the graph of f. Find

(a) Domain of f
(c) $f(-1)=$
(e) $f(-3)=$
(b) Range of f
(d) $f(2)=$
(f) $f(7)=$
16. Below is the graph of $f(x)=x^{3}-3 x^{2}-24 x+1$.

(a) Identify any relative minimum/minima.
(b) Identify any relative maximum/maxima.
(c) Determine the intervals for which f is increasing.
(d) Determine the intervals for which f is decreasing.

