MATH 11010: Exam \#3 (Spring 2013)

1. Solve: $6 x^{2}-x-15 \geq 0$
2. Solve: $\frac{3 x-2}{8 x^{2}+14 x+3} \leq 0$
3. Find the equation of the vertical asymptote(s) of the following functions. Be specific!
(a) $f(x)=\frac{x^{2}-3 x+2}{49 x^{2}-8}$
(b) $g(x)=\frac{4 x^{2}-1}{5 x^{3}-2 x^{2}-20 x+8}$
4. Find the equation of the horizontal asymptote of the following functions, if one exists. Be specific!
(a) $f(x)=\frac{x^{2}-3 x+2}{49 x^{2}-8}$
(b) $g(x)=\frac{4 x^{2}-1}{5 x^{3}-2 x^{2}-20 x+8}$
5. Consider $f(x)=\frac{4 x^{3}-6 x^{2}+x-15}{2 x^{2}+x+3}$
(a) Explain how you know that f has an oblique asymptote. Be specific.
(b) Find the equation of the oblique asymptote.
6. Find a rational function that satisfies the following conditions:

$$
\begin{aligned}
\text { Vertical Asymptotes: } & x=3, \quad x=-\frac{5}{3} \\
\text { Horizontal Asymptote: } & y=\frac{5}{12}
\end{aligned}
$$

7. Use the Rational Zero Theorem to list all possible rational zeros of

$$
f(x)=9 x^{5}-6 x^{4}+3 x^{3}-7 x+8
$$

8. Suppose a polynomial function with rational coefficients has

$$
7-5 i, \quad \sqrt{5}, \quad \frac{7}{8}, \quad \text { and } \quad-3
$$

as some of its zeros. List the values that must also be zeros.
9. Find a polynomial function with zeros $x=\frac{7}{9}$ (multiplicity 3), $x=0$ (multiplicity 2), and $x=-3$ (multiplicity 4). Please leave your answer in factored form.
10. Consider $P(x)=4 x^{5}-12 x^{4}-87 x^{3}+160 x^{2}+168 x-288$ whose graph is given below.

(a) Show that $x=\frac{3}{2}$ is a zero.
(b) Find all other zeros of P. You must show all work. (Show algebraically that they are zeros).
11. Consider $P(x)=-x^{5}+2 x^{4}+11 x^{3}-64 x^{2}-60 x+288$ whose graph is given below. Find all zeros of this function. (Show algebraically that they are zeros).

12. Find all zeros of $P(x)=18 x^{4}-15 x^{3}+23 x^{2}+34 x-22$.

13. Given below is the graph of f.

(a) Is the degree of f even or odd?
(b) Is the leading coefficient of f positive or negative?
(c) Determine the interval(s) where $f(x) \geq 0$.
(d) Determine the interval(s) where $f(x)<0$.
(e) List the real zeros of f AND state whether each zero has even or odd multiplicity.

ANSWERS

1. $\left(-\infty,-\frac{3}{2}\right] \cup\left[\frac{5}{3}, \infty\right)$
2. $\left(-\infty,-\frac{3}{2}\right) \cup\left(-\frac{1}{4}, \frac{2}{3}\right]$
3. (a) $x= \pm \frac{2 \sqrt{2}}{7}$
(b) $x=\frac{2}{5}, x= \pm 2$
4. (a) $y=\frac{1}{49}$
(b) $y=0$
5. (a) the degree of the numerator is exactly one more than the degree of the denominator.
(b) $y=2 x-4$
6. $f(x)=\frac{5 x^{2}}{12 x^{2}-16 x-60}$
7. $\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}, \pm \frac{1}{9}, \pm \frac{2}{9}, \pm \frac{4}{9}, \pm \frac{8}{9}$
8. $7+5 i,-\sqrt{5}$
9. $f(x)=x^{2}(9 x-7)^{3}(x+3)^{4}$
10. (a) show using synthetic division that the remainder is zero.
(b) $x=\frac{3}{2}, x=-4, x=2 \pm 2 \sqrt{3}$
11. $x=-3$ (multiplicity 2), $x=2, x=3 \pm \sqrt{7} i$
12. $x=\frac{1}{2}, x=-1, x=\frac{2}{3} \pm \sqrt{2} i$
13. (a) even
(b) negative
(c) $[-3,4]$
(d) $(-\infty,-3) \cup(4, \infty)$
(e) $x=-3$ (odd); $x=-1$ (even); $x=2$ (even); $x=4$ (odd)
