MATH 11010: Algebra of Functions Section 1.6

Sums, Differences, Products, and Quotients

If f and g are functions and x is in the domain of each function, then

- $(f+g)(x)=f(x)+g(x)$
- $(f-g)(x)=f(x)-g(x)$
- $(f g)(x)=f(x) \cdot g(x)$
- $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$, provided $g(x) \neq 0$

NOTES:

- The domain of $f+g, f-g$, and $f g$ is the intersection of the domain of f and the domain of g.
- The domain of $\frac{f}{g}$ is also the intersection of the domain of f and the domain of g with the exclusion of any values of x for which $g(x)=0$.

Example 1: Given $f(x)=3 x-4$ and $g(x)=\sqrt{2 x-1}$, find each of the following, if it exists.
(a) $\quad(f+g)(5)$
(b) $\quad\left(\frac{f}{g}\right)(4)$
(c) $\quad(f g)(0)$
(d) domain of $\frac{g}{f}$

Difference Quotients: $\frac{f(x+h)-f(x)}{h}$
Example 2: Given $f(x)=2 x^{2}-5 x+7$, find $\frac{f(x+h)-f(x)}{h}$.

Example 3: Given $f(x)=\frac{x}{2-x}$, find $\frac{f(x+h)-f(x)}{h}$.

Composition of Functions

The composition function $f \circ g$ is defined as

$$
(f \circ g)(x)=f(g(x)),
$$

where x is in the domain of g and $g(x)$ is in the domain of f.

Example 4: Let $f(x)=3 x-2$ and $g(x)=5-3 x-2 x^{2}$. Find and simplify each of the following.
(a) $(f \circ g)(x)=$
(b) $(g \circ f)(x)=$
(c) $(f \circ f)(-2)=$
(d) $(g \circ g)(0)=$

Example 5: Let $H(x)=3(2 x+1)^{5}-7$. Find functions f and g such that

$$
(f \circ g)(x)=H(x)
$$

