MATH 11010: Complex Numbers Section 2.2

- The number i : The number i is defined such that $i=\sqrt{-1}$ and $i^{2}=-1$.

Example 1: Express the number in terms of i.
(a) $\sqrt{-16}$
(b) $\sqrt{-45}$

- Complex Numbers: A complex number is a number of the form $a+b i$ where a and b are real numbers. The number a is said to be the real part of $a+b i$ and the number b is said to be the imaginary part of $a+b i$.
- Note that a real number is a complex number with $b=0$.

Example 2: Add or subtract and simplify each of the following.
(a) $(-9+3 i)+(-5-7 i)$
(b) $(7-3 i)-(4+3 i)$

CAUTION: If \sqrt{a} and \sqrt{b} are real numbers, then $\sqrt{a} \cdot \sqrt{b}=\sqrt{a b}$. However, this is not true when \sqrt{a} and \sqrt{b} are not real numbers.

Example 3: Multiply and simplify each of the following.
(a) $\sqrt{-16} \cdot \sqrt{-4}$
(b) $\sqrt{-3} \cdot \sqrt{-5}$
(c) $(3-2 i)(5+4 i)$
(d) $(3-4 i)^{2}$

- Conjugate of a complex number: The conjugate of a complex number $a+b i$ is $a-b i$. The numbers $a+b i$ and $a-b i$ are complex conjugates. Note that the product of a complex number and its conjugate is a real number.

Example 4: Simplify the following. Write answers in the form $a+b i$, where a and b are real number.
(a) $\frac{6}{3-5 i}$
(b) $\frac{3-2 i}{4+3 i}$

