MATH 11010: Complex Numbers Section 2.2

• The number *i*: The number *i* is defined such that $i = \sqrt{-1}$ and $i^2 = -1$.

Example 1: Express the number in terms of *i*.

- (a) $\sqrt{-16}$ (b) $\sqrt{-45}$
 - Complex Numbers: A complex number is a number of the form a + bi where a and b are real numbers. The number a is said to be the **real part** of a + bi and the number b is said to be the **imaginary part** of a + bi.
 - Note that a real number is a complex number with b = 0.

Example 2: Add or subtract and simplify each of the following.

(a)
$$(-9+3i) + (-5-7i)$$
 (b) $(7-3i) - (4+3i)$

CAUTION: If \sqrt{a} and \sqrt{b} are real numbers, then $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$. However, this is not true when \sqrt{a} and \sqrt{b} are not real numbers.

Example 3: Multiply and simplify each of the following.

(a) $\sqrt{-16} \cdot \sqrt{-4}$ (b) $\sqrt{-3} \cdot \sqrt{-5}$

(c) (3-2i)(5+4i) (d) $(3-4i)^2$

• Conjugate of a complex number: The conjugate of a complex number a + bi is a - bi. The numbers a + bi and a - bi are complex conjugates. Note that the product of a complex number and its conjugate is a real number.

Example 4: Simplify the following. Write answers in the form a + bi, where a and b are real number.

(a)
$$\frac{6}{3-5i}$$

(b)
$$\frac{3-2i}{4+3i}$$