MATH 11010: Exponential Functions
Section 4.2

- **Exponential functions**: The function \(f(x) = a^x \), where \(x \) is a real number, \(a > 0 \) and \(a \neq 1 \), is called an exponential function with base \(a \).

- **Properties of the graph of** \(f(x) = a^x \), \(a > 0, a \neq 1 \)

 * Domain is all real numbers.
 * Range is \((0, \infty)\).
 * Always crosses through the point \((0, 1)\).
 * \(y = 0 \) is a horizontal asymptote.
 * The function is one-to-one.
 * If \(a > 1 \), then the function is increasing; if \(0 < a < 1 \), then the function is decreasing.

Example 1: Sketch the graph of the following functions.

(a) \(f(x) = 2^{x-1} + 3 \)
(b) \(f(x) = \left(\frac{1}{4}\right)^{x+2} - 1 \)
• **Compound Interest**: The amount of money A that a principal P will grow to after t years at interest rate r (in decimal form), compounded n times per year, is given by the formula:

$$A = P \left(1 + \frac{r}{n}\right)^{nt}$$

Example 2: If $4000 is borrowed at a rate of 16% interest per year, compounded quarterly, find the amount due at the end of 4 years? 8 years?

Example 3: If $3000 is borrowed at a rate of 12% interest per year, find the amount due at the end of 5 years if the interest is compounded annually? monthly? daily?

Homework: pp 370-371; 5-10 all, 27–53 odd.