MATH 11010: Introduction to Graphing Section 1.1

Graphs provide a way of displaying, interpreting, and analyzing data in a visual format. In many problems, we will consider two variables. Therefore, we will need to have two axes - one for the x variable and another for the y variable. Together these axes will form the Rectangular Coordinate System, or Cartesian Coordinate System. The horizontal axis is the x-axis and the vertical axis is the y-axis. These two axes divide the $x y$-plane into four quadrants and the intersection of the two axes is called the origin. See the following diagram.

Ordered pair: Each point in the plane is called an ordered pair and is denoted (x, y). The first number x indicates the point's horizontal location with respect to the y-axis, and the second number y indicates the point's vertical location with respect to the x-axis. Hence, the origin is labeled $(0,0)$.

Example 1: Plot the following points on the same set of axes:

$$
A=(2,-3), B=(-2,3), C=(-1,-4), \text { and } D=(1,5) .
$$

- The x-intercept of a graph is the point where the graph crosses the x-axis. This point is $(a, 0)$ where to find a, we let $y=0$ and solve for x.
- The y-intercept of a graph is the point where the graph crosses the y-axis. This point is $(0, b)$ where to find b, we let $x=0$ and solve for y.

Example 2: Find the x-intercept(s) and y-intercept(s) for $4 x^{2}+16 y^{2}=5$.

- The Distance Formula: The distance d between any two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

- The Midpoint Formula: If the endpoints of a segment are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, then the coordinates of the midpoint are

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Example 3: Given $(3,-5)$ and $(1,-9)$ find:
(a) the distance between these two points.
(b) the midpoint of the line segment connecting these two points.

- The Equation of a Circle: A circle is the set of all points in a plane that are a fixed distance r from a fixed point, the center (h, k). The equation of a circle with center (h, k) and radius r, in standard form, is

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Example 4: Find the equation of the circle satisfying the given conditions.
(a) center $(-4,7)$, radius of length 3 .
(b) the points $(4,-3)$ and $(-6,9)$ are endpoints of the diameter.

Homework: pp 70-72; \#1-13 every other odd (eoo), 15-19 odd, 39-65 eoo, 71-89 odd

