## MATH 11010: Inverse Functions Section 4.1

- Inverse Relation: Interchanging the first and second coordinates of each ordered pair in a relation produces the inverse relation. If the relation is defined by an equation, interchanging the variables produces an equation of the inverse relation.
- One-to-one functions: A function $f$ is one-to-one if no two elements of the domain $A$ have the same image. In other words, $f$ is a one-to-one function if $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$.

Example 1: Determine whether $f(x)=8 x-3$ is a one-to-one function.

- Horizontal Line Test: If it is possible for a horizontal line to intersect the graph of a function more than once, then the function is NOT one-to-one.

Example 2: Determine if each of following curves is the graph of an one-to-one function.



- Inverse function: Let $f$ be a one-to-one function with domain $A$ and range $B$. Then its inverse function, denoted $f^{-1}$, has domain $B$ and range $A$ and is defined by

$$
f^{-1}(y)=x \quad \text { if and only if } \quad f(x)=y
$$

for any $y$ in $B$. Please note that -1 is NOT an exponent; therefore, $f^{-1}$ does NOT mean the reciprocal of $f$.

## - Properties of inverse functions:

* Let $f$ be a one-to-one function with domain $A$ and range $B$. The inverse function $f^{-1}$ satisfies

$$
\begin{array}{lll} 
& f^{-1}(f(x))=x & \text { for every } x \text { in } A \\
\text { and } & f\left(f^{-1}(x)\right)=x & \text { for every } x \text { in } B
\end{array}
$$

* The inverse of $f^{-1}$ is $f$. So, we say that $f$ and $f^{-1}$ are inverses of each other.
* The inverse function interchanges the domain and range. Namely,

$$
\begin{aligned}
\text { Domain of } f & =\text { Range of } f^{-1} \\
\text { Range of } f & =\text { Domain of } f^{-1}
\end{aligned}
$$

* The graph of $f^{-1}$ is found by reflecting the graph of $f$ across the line $y=x$.
* Only a one-to-one function can have an inverse function.

Example 3: For the function $f$, use composition of functions to show that $f^{-1}$ is as given.

$$
f(x)=\frac{x+5}{4} \quad \text { and } \quad f^{-1}(x)=4 x-5 .
$$

Finding the inverse of a one-to-one function:

- Replace $f(x)$ with $y$.
- Interchange $x$ and $y$.
- Solve this equation for $y$. The resulting equation is $f^{-1}(x)$.

Example 4: Find the inverse of $f(x)=9-7 x$.

Example 5: Find the inverse of $f(x)=\frac{x+1}{3 x+2}$

Example 6: Find the inverse of $f(x)=3 x^{2}-4, \quad x \leq 0$.

Example 7: Given the graph of $f$, sketch the graph of $f^{-1}$.



Homework: pp 356-358; \#17-53 odd, 57, 59, 67-77 odd, 79-85 (just find inverse).

