MATH 11010: Inverse Functions Section 4.1

- **Inverse Relation:** Interchanging the first and second coordinates of each ordered pair in a relation produces the **inverse relation**. If the relation is defined by an equation, interchanging the variables produces an equation of the inverse relation.
- One-to-one functions: A function f is one-to-one if no two elements of the domain A have the same image. In other words, f is a one-to-one function if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

Example 1: Determine whether f(x) = 8x - 3 is a one-to-one function.

• Horizontal Line Test: If it is possible for a horizontal line to intersect the graph of a function more than once, then the function is NOT one-to-one.

Example 2: Determine if each of following curves is the graph of an one-to-one function.

• Inverse function: Let f be a one-to-one function with domain A and range B. Then its inverse function, denoted f^{-1} , has domain B and range A and is defined by

 $f^{-1}(y) = x$ if and only if f(x) = y

for any y in B. Please note that -1 is NOT an exponent; therefore, f^{-1} does NOT mean the reciprocal of f.

• Properties of inverse functions:

* Let f be a one-to-one function with domain A and range B. The inverse function f^{-1} satisfies

$$f^{-1}(f(x)) = x$$
 for every x in A
and $f(f^{-1}(x)) = x$ for every x in B

- * The inverse of f^{-1} is f. So, we say that f and f^{-1} are inverses of each other.
- * The inverse function interchanges the domain and range. Namely,

Domain of f = Range of f^{-1} Range of f = Domain of f^{-1}

- * The graph of f^{-1} is found by reflecting the graph of f across the line y = x.
- * Only a one-to-one function can have an inverse function.

Example 3: For the function f, use composition of functions to show that f^{-1} is as given.

$$f(x) = \frac{x+5}{4}$$
 and $f^{-1}(x) = 4x - 5$.

Finding the inverse of a one-to-one function:

- Replace f(x) with y.
- Interchange x and y.
- Solve this equation for y. The resulting equation is $f^{-1}(x)$.

Example 4: Find the inverse of f(x) = 9 - 7x.

Example 5: Find the inverse of $f(x) = \frac{x+1}{3x+2}$

Example 6: Find the inverse of $f(x) = 3x^2 - 4$, $x \le 0$.

Example 7: Given the graph of f, sketch the graph of f^{-1} .

Homework: pp 356–358; #17–53 odd, 57, 59, 67–77 odd, 79–85 (just find inverse).