MATH 11010: Inverse Functions
Section 4.1

• **Inverse Relation:** Interchanging the first and second coordinates of each ordered pair in a relation produces the inverse relation. If the relation is defined by an equation, interchanging the variables produces an equation of the inverse relation.

• **One-to-one functions:** A function \(f \) is one-to-one if no two elements of the domain \(A \) have the same image. In other words, \(f \) is a one-to-one function if \(f(x_1) = f(x_2) \) implies \(x_1 = x_2 \).

Example 1: Determine whether \(f(x) = 8x - 3 \) is a one-to-one function.

• **Horizontal Line Test:** If it is possible for a horizontal line to intersect the graph of a function more than once, then the function is NOT one-to-one.

Example 2: Determine if each of the following curves is the graph of an one-to-one function.
• **Inverse function:** Let f be a one-to-one function with domain A and range B. Then its inverse function, denoted f^{-1}, has domain B and range A and is defined by

$$f^{-1}(y) = x \quad \text{if and only if} \quad f(x) = y$$

for any y in B. Please note that $^{-1}$ is NOT an exponent; therefore, f^{-1} does NOT mean the reciprocal of f.

• **Properties of inverse functions:**

* Let f be a one-to-one function with domain A and range B. The inverse function f^{-1} satisfies

$$f^{-1}(f(x)) = x \quad \text{for every} \ x \text{ in } A$$

and

$$f(f^{-1}(x)) = x \quad \text{for every} \ x \text{ in } B$$

* The inverse of f^{-1} is f. So, we say that f and f^{-1} are inverses of each other.

* The inverse function interchanges the domain and range. Namely,

$$\text{Domain of } f = \text{Range of } f^{-1}$$

$$\text{Range of } f = \text{Domain of } f^{-1}$$

* The graph of f^{-1} is found by reflecting the graph of f across the line $y = x$.

* Only a one-to-one function can have an inverse function.

Example 3: For the function f, use composition of functions to show that f^{-1} is as given.

$$f(x) = \frac{x + 5}{4} \quad \text{and} \quad f^{-1}(x) = 4x - 5.$$
Finding the inverse of a one-to-one function:

- Replace \(f(x) \) with \(y \).
- Interchange \(x \) and \(y \).
- Solve this equation for \(y \). The resulting equation is \(f^{-1}(x) \).

Example 4: Find the inverse of \(f(x) = 9 - 7x \).

Example 5: Find the inverse of \(f(x) = \frac{x + 1}{3x + 2} \).
Example 6: Find the inverse of \(f(x) = 3x^2 - 4, \ x \leq 0. \)

Example 7: Given the graph of \(f \), sketch the graph of \(f^{-1} \).