MATH 11010: Properties of Log Functions Section 4.4

• Logarithmic functions: Let a be a positive number with $a \neq 1$. The logarithmic function with base a, denoted $\log_a x$, is defined by

$$y = \log_a x$$
 if and only if $x = a^y$.

• Common logarithm: The logarithm with base 10 is called the common logarithm. The base 10 is usually omitted when working with the common logarithm.

$$\log_{10} x = \log x$$
.

• Natural logarithm: The logarithm with base e is called the natural logarithm and is denoted by

$$\log_e x = \ln x.$$

Laws of Logarithms: Let a be a positive number with $a \neq 1$. Let A > 0, B > 0, and n be any real number.

- $\log_a AB = \log_a A + \log_a B$. (The logarithm of a product is the sum of the logarithms.)
- $\log_a\left(\frac{A}{B}\right) = \log_a A \log_a B$. (The logarithm of a quotient is the difference of the logarithms.)
- $\log_a A^n = n \log_a A$. (The logarithm of a quantity raised to a power is the same as the power times the logarithm of the quantity.)

Common Mistakes to Avoid:

•
$$\log_a(A+B) \neq \log_a A + \log_a B$$
.

•
$$\log_a \frac{A}{B} \neq \frac{\log_a A}{\log_a B}$$
.

•
$$(\log_a A)^n \neq n \log_a A$$
.

•
$$\log_a AB \neq (\log_a A) (\log_a B)$$
.

Example 1: Express as a single logarithm:

(a)
$$5\log z - 3\log x + 7\log y$$

(b)
$$3\ln(x-2) - 5[\ln x - 2\ln(x+1)]$$

(c)
$$4[3\log_2 x - \log_2(x+5)] - 2\log_2(x-5)$$

Example 2: Express in expanded form:

(a)
$$\log_2 x^3 y^5 z^9$$

(b)
$$\log \left(\frac{x^2(x+1)^6}{(x-3)^5} \right)$$

(c)
$$\log_3 \left(\frac{x^3}{\sqrt{x+1}(x-9)^7} \right)$$

• Properties of logarithms: Let a be a positive number such that $a \neq 1$. Then

*
$$\log_a 1 = 0$$

*
$$\log_a a^x = x$$

*
$$\log_a a = 1$$

*
$$a^{\log_a x} = x$$

Example 3: Given that $\log_a 2 \approx 0.301$, $\log_a 7 \approx 0.845$, $\log_a 11 \approx 1.041$, find each of the following, if possible. Round answer to the nearest thousandths.

(a) $\log_a \frac{14}{11}$

(b) $\log_a 98$

Example 4: Simplify.

(a) $\log_9 9^{311} =$

(c) $e^{\ln 4t} =$

(b) $\ln e^{45} =$

(d) $10^{\log 78} =$