MATH 11010: Logarithmic Functions Section 4.3

- Logarithmic functions: Let a be a positive number with $a \neq 1$. The logarithmic function with base a, denoted $\log _{a} x$, is defined by

$$
y=\log _{a} x \quad \text { if and only if } \quad x=a^{y} .
$$

- Common logarithm: The logarithm with base 10 is called the common logarithm.

The base 10 is usually omitted when working with the common logarithm.

$$
\log _{10} x=\log x .
$$

- Natural logarithm: The logarithm with base e is called the natural logarithm and is denoted by

$$
\log _{e} x=\ln x
$$

- Properties of the graph of $y=\log _{a} x$:
* Domain is $(0, \infty)$.
* Range is all real numbers.
* Always crosses through the point $(1,0)$.
* $x=0$ is a vertical asymptote.
* The function is one-to-one.
* If $a>1$, then the function is increasing; if $0<a<1$, then the function is decreasing.
- Properties of logarithms: Let a be a positive number such that $a \neq 1$. Then
* $\log _{a} 1=0$
* $\log _{a} a=1$
* $\log _{a} a^{x}=x$
* $a^{\log _{a} x}=x$

Example 1: Find each of the following:
(a) $\log _{2} 64=$
(c) $\log _{1 / 27} 9=$
(b) $\log _{8} 4=$
(d) $\log _{5} 5^{2}=$

Example 2: Convert to a logarithmic equation.
(a) $3^{4}=81$
(b) $10^{3}=1000$
(c) $e^{4}=x$

Example 3: Convert to an exponential equation.
(a) $\log 7=0.845$
(b) $\ln 0.38=-0.9676$
(c) $y=\log _{4} 7$

- Change of base formula: For any logarithmic bases a and b, and any positive number M,

$$
\log _{b} M=\frac{\log _{a} M}{\log _{a} b} .
$$

The change of base formula allows you to use your calculator to evaluate logarithms. In order to use the calculator, a must be either 10 or e.

Example 4: Find $\log _{7} 9$ using a calculator. Round answer to four decimal places.

Example 5: Find the domain and vertical asymptote for $f(x)=\ln (4 x-7)$

Homework: pp 387-388; 1-77 eoo, 83- 89 odd (Find domain and vertical asymptote only.)

