MATH 11010: Logarithmic Functions Section 4.3

• Logarithmic functions: Let a be a positive number with $a \neq 1$. The logarithmic function with base a, denoted $\log_a x$, is defined by

 $y = \log_a x$ if and only if $x = a^y$.

• **Common logarithm**: The logarithm with base 10 is called the common logarithm. The base 10 is usually omitted when working with the common logarithm.

$$\log_{10} x = \log x.$$

• **Natural logarithm**: The logarithm with base *e* is called the natural logarithm and is denoted by

$$\log_e x = \ln x.$$

- Properties of the graph of $y = \log_a x$:
 - * Domain is $(0, \infty)$.
 - * Range is all real numbers.
 - * Always crosses through the point (1,0).
 - * x = 0 is a vertical asymptote.
 - * The function is one-to-one.
 - * If a > 1, then the function is increasing; if 0 < a < 1, then the function is decreasing.
- Properties of logarithms: Let a be a positive number such that $a \neq 1$. Then

*
$$\log_a 1 = 0$$

* $\log_a a = 1$
* $\log_a a^x = x$
* $a^{\log_a x} = x$

Example 1: Find each of the following:

(a) $\log_2 64 =$ (c) $\log_{1/27} 9 =$

(b) $\log_8 4 =$ (d) $\log_5 5^2 =$

Example 2: Convert to a logarithmic equation.

(a) $3^4 = 81$ (b) $10^3 = 1000$ (c) $e^4 = x$

Example 3: Convert to an exponential equation.

(a) $\log 7 = 0.845$ (b) $\ln 0.38 = -0.9676$ (c) $y = \log_4 7$

• Change of base formula: For any logarithmic bases *a* and *b*, and any positive number *M*,

$$\log_b M = \frac{\log_a M}{\log_a b}.$$

The change of base formula allows you to use your calculator to evaluate logarithms. In order to use the calculator, a must be either 10 or e.

Example 4: Find log₇ 9 using a calculator. Round answer to four decimal places.

Example 5: Find the domain and vertical asymptote for $f(x) = \ln(4x - 7)$

Homework: pp 387–388; 1–77 eoo, 83–89 odd (Find domain and vertical asymptote only.)