MATH 11010: Polynomial Functions Section 3.1

- Polynomial: A polynomial function P is given by

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdot+a_{1} x+a_{0}
$$

where the coefficients $a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}$ are real numbers and the exponents are whole numbers.

* The coefficient a_{n} is called the leading coefficient.
* The term $a_{n} x^{n}$ is called the leading term.
* The degree of the polynomial is n.
- Leading Term Test: If $a_{n} x^{n}$ is the leading term of a polynomial function, then the left end behavior (as $x \rightarrow-\infty$) and right end behavior (as $x \rightarrow \infty$) of the graph can be described in one of the following ways:
* If n is even and $a_{n}>0$, then

$$
f(x) \rightarrow \infty \quad \text { as } \quad x \rightarrow-\infty \quad \text { and } \quad f(x) \rightarrow \infty \text { as } x \rightarrow \infty
$$

* If n is even and $a_{n}<0$, then

$$
f(x) \rightarrow-\infty \quad \text { as } x \rightarrow-\infty \quad \text { and } \quad f(x) \rightarrow-\infty \text { as } x \rightarrow \infty
$$

* If n is odd and $a_{n}>0$, then

$$
f(x) \rightarrow-\infty \quad \text { as } \quad x \rightarrow-\infty \quad \text { and } \quad f(x) \rightarrow \infty \quad \text { as } x \rightarrow \infty
$$

* If n is odd and $a_{n}<0$, then

$$
f(x) \rightarrow \infty \quad \text { as } x \rightarrow-\infty \quad \text { and } \quad f(x) \rightarrow-\infty \quad \text { as } \quad x \rightarrow \infty
$$

- Zero: If P is a polynomial and if c is a number such that $P(c)=0$ then c is a zero of P.
- The following are all equivalent:
* c is a zero of P
* $(c, 0)$ is an x-intercept of the graph of P
* $x-c$ is a factor of P
* $x=c$ is a solution of the equation $P(x)=0$
- Even and Odd Multiplicity: Let $k \geq 1$. If $(x-c)^{k}$ is a factor of a polynomial function P and $(x-c)^{k+1}$ is not a factor of P and:
* k is odd, then the graph crosses the x-axis at $(c, 0)$.
* k is even, then the graph is tangent to the x-axis at $(c, 0)$.
- Every polynomial function of degree n, with $n \geq 1$ has at least one zero and at most n zeros.

