MATH 11010: Polynomial Functions Section 3.1

• Polynomial: A polynomial function *P* is given by

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$

where the coefficients $a_0, a_1, \ldots, a_{n-1}, a_n$ are real numbers and the exponents are whole numbers.

- * The coefficient a_n is called the **leading coefficient**.
- * The term $a_n x^n$ is called the **leading term**.
- * The **degree** of the polynomial is n.
- Leading Term Test: If $a_n x^n$ is the leading term of a polynomial function, then the left end behavior (as $x \to -\infty$) and right end behavior (as $x \to \infty$) of the graph can be described in one of the following ways:
 - * If n is even and $a_n > 0$, then

 $f(x) \to \infty$ as $x \to -\infty$ and $f(x) \to \infty$ as $x \to \infty$

* If n is even and $a_n < 0$, then

 $f(x) \to -\infty$ as $x \to -\infty$ and $f(x) \to -\infty$ as $x \to \infty$

* If n is odd and $a_n > 0$, then

$$f(x) \to -\infty$$
 as $x \to -\infty$ and $f(x) \to \infty$ as $x \to \infty$

* If n is odd and $a_n < 0$, then

 $f(x) \to \infty$ as $x \to -\infty$ and $f(x) \to -\infty$ as $x \to \infty$

- Zero: If P is a polynomial and if c is a number such that P(c) = 0 then c is a zero of P.
- The following are all equivalent:
 - * c is a zero of P
 - * (c,0) is an *x*-intercept of the graph of *P*
 - * x c is a factor of P
 - * x = c is a solution of the equation P(x) = 0
- Even and Odd Multiplicity: Let $k \ge 1$. If $(x c)^k$ is a factor of a polynomial function P and $(x c)^{k+1}$ is not a factor of P and:
 - * k is odd, then the graph crosses the x-axis at (c, 0).
 - * k is even, then the graph is tangent to the x-axis at (c, 0).
- Every polynomial function of degree n, with $n \ge 1$ has at least one zero and at most n zeros.