MATH 11010: Zeros of Polynomials Section 3.4

- Fundamental Theorem of Algebra: Every polynomial function of degree n, with $n \geq 1$, has at least one complex zero. (Remember a real number is a complex number with imaginary part zero.)
- Every polynomial function f of degree n, with $n \geq 1$, can be factored into n linear factors (not necessarily unique).

Example 1: Find a polynomial of degree 4 with -2 as a zero of multiplicity 1,3 as a zero of multiplicity 2 , and -1 as a zero of multiplicity 1 .

- Nonreal Zeros: If a complex number $a+b i, b \neq 0$, is a zero of a polynomial function P with real coefficients, then its conjugate, $a-b i$, is also a zero. Hence, for a polynomial with real coefficients, nonreal zeros occur in conjugate pairs.
- Irrational Zeros: If $a+c \sqrt{b}$, where a, b, and c are rational and b is not a perfect square is a zero of a polynomial function P with rational coefficients, the its conjugate, $a-c \sqrt{b}$, is also a zero. Hence, for a polynomial with rational coefficients, irrational zeros occur in conjugate pairs.

Example 2: Find a polynomial of lowest degree with rational coefficients that has $-2 i$ and $1+\sqrt{3}$ as some of its zeros.

- Rational Zeros Theorem: If the polynomial

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

has integer coefficients, then every rational zero of P is of the form $\frac{p}{q}$ where p is a factor of the constant term a_{0}, and q is a factor of the leading coefficient a_{n}.

- The Rational Zeros Theorem does NOT list irrational zeros. These will need to be found using other means like the quadratic formula.

Example 3: List all POSSIBLE rational zeros of $P(x)=2 x^{3}+15 x^{2}+22 x-15$.

Example 4: For $P(x)=2 x^{4}+7 x^{3}-x^{2}-15 x-9$, find all zeros of P and then factor P into linear factors.

Example 5: For $P(x)=3 x^{4}-4 x^{3}+x^{2}+6 x-2$, find all zeros of P.

Example 6: For $f(x)=2 x^{6}-3 x^{5}-13 x^{4}+29 x^{3}-27 x^{2}+32 x-12$

